The FTIR spectrum of the PUR sample was recorded and is displayed in **Fig. S1**. The absorption bands at 3396 cm⁻¹ corresponded to the N-H stretching mode. The peak at 1519 cm⁻¹ confirmed the combination of N-H out-of-plane bending and C-N stretching mode. Bands at 2971 and 2925 cm⁻¹ were associated with -CH₂ stretching, while other modes of -CH₂ were identified by the bands at 1313 and 1413 cm⁻¹. In addition, the absorption band at 1718 cm⁻¹ was associated with a C=O group. The absorption bands at 1079 and 1230 cm⁻¹ originated from a C-O-C group. There were phenyl absorption bands located at 3122, 3019, 1602, 817 and 767 cm⁻¹. These characteristic peaks indicated that the PUR sample could be ascribed to polyester polyurethane.

Fig. S1. FT-IR spectrum of *PUR* sample

Table S1. Model-fitting and model-free methods used

Methods	Equations	Plotting method
CR	$ln\frac{g(a)}{T^2} = ln\frac{AR}{\beta E_{\alpha}} - \frac{E_{\alpha}}{RT}$	$ln \frac{g(a)}{T^2}$ against $\frac{1}{T}$, Slope=-
	, a	E_{α}/R
Friedman	$ln(\beta \frac{d\alpha}{dT}) = ln[Af(\alpha)] - \frac{E_{\alpha}}{RT}$	$ln(\beta \frac{d\alpha}{dT})$ against $\frac{1}{T}$, Slope=-
		E_{α}/R
FWO	$ln\beta = ln\frac{AE_{\alpha}}{Rg(\alpha)} - 5.331 - 1.052\frac{E_{\alpha}}{RT}$	$ln\beta$ against $\frac{1}{T}$, Slope=-
		$1.052E_{\alpha}/R$
Tang	$ln\frac{\beta}{T^{1.894661}} = -1.00145033\frac{E\alpha}{RT} + C$	$lnrac{eta}{T^{1.894661}}$ against $rac{1}{T}$,
		Slope=-1.00145033E _α /R