Does education decrease Euroscepticism? A regression discontinuity design using compulsory schooling reforms in four European countries.

Sander Kunst, Department of Sociology and Department of Political Science, University of Amsterdam, Amsterdam, The Netherlands.

Theresa Kuhn, Department of Political Science, University of Amsterdam, Amsterdam, The Netherlands.

Herman van de Werfhorst, Department of Sociology, University of Amsterdam, Amsterdam, The Netherlands.

Online Appendix

- Appendix A: Overview of compulsory schooling reforms
- Appendix B: Results for testing effective reforms for years of education
- Appendix C: Testing RD assumptions
- Appendix D: Individual reform results -'fuzzy' RDs
- Appendix E: Pooled reduced-form RD results

Appendix F: Correlation between years of education and EU-attitudes

Appendix A

Table i gives an overview of tested compulsory schooling reforms as listed in Cavaille and Marshall (2019). We dropped the reforms in Finland and Germany, because these reforms took place in separate regions. Although we can specify specific regions in the ESS, this means we have to assume people did not move their entire life. Given this uncertainty, we dropped both country-reforms (Both country-reforms also did not yield a significant increase in years of schooling).

Country	Year of reform	Change	First cohort affected
Austria	1962	14 to 15	1948
Belgium	1983	14 to 18	1969
Denmark	1958	14 to 16	1944
France	1967	14 to 16	1953
Greece	1975	12 to 15	1963
Ireland	1967	14 to 15	1953
Italy	1963	11 to 14	1952
The Netherlands	1974	15 to 16	1959
Portugal	1964	12 to 14	1952
Spain	1969	12 to 14	1957
Sweden	1965	14 to 16	1951
Great Britain	1947	14 to 15	1933
Great Britain	1972	15 to 16	1957

Table i. Analysed compulsory schooling reforms

Appendix B

Below we demonstrate that (a) for five reforms we find a significant increase in the average years of education at the cut-off and (b) that the pooled result is robust for different bandwidths.

Table ii. Effect of reforms for years of education		
Compulsory schooling reform	Years of education	
Great Britain (1947)	0,520**	
	(0,219)	
Optimal bandwidth	5.098	
Ν	1816	
Great Britain (1972)	0,304**	
	(0,151)	
Optimal bandwidth	5.981	
Ν	2706	
Netherlands (1974)	0,246**	
	(0,120)	
Optimal bandwidth	9.560	
Ν	4600	
Denmark (1958)	0,453*	
	(0,273)	
Optimal bandwidth	6.932	
Ν	2330	
Sweden (1965)	0,292*	
	(0,171)	
Optimal bandwidth	6.766	
Ν	2754	
Pooled	0,292***	
	(0,065)	
Optimal bandwidth	9.960	
Ν	20,000	

Note: Reduced-form RDs. Conventional estimates are used. Standard errors are indicated within parenthesis. * denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01. All calculations use local linear regression, with an optimal bandwidth and a triangular kernel. These models include country-reform fixed-effects.

Compulsory schooling reform	Years of education
Austria (1962)	-0.107
	(0.189)
Optimal bandwidth	7.081
Ν	1878
Relgium (1983)	0.0895
Deighum (1903)	(0.200)
Optimal bandwidth	4 187
N	1921
	1721
France (1967)	0.234
	(0.170)
Optimal bandwidth	9.640
Ν	4278
C_{masses} (1075)	0.204
Greece (1975)	0.294
Optimal handwidth	(0.283)
N	0.908
	2212
Ireland (1967)	0.205
	(0.126)
Optimal bandwidth	9.661
Ν	4692
I_{10} (1062)	0.671
Haly (1903)	-0.071
Optimal bandwidth	9 299
N	704
	, , , , ,
Portugal (1964)	0.353
	(0.289)
Optimal bandwidth	7.993
Ν	3109
Spain (1960)	0.02/1
Spani (1909)	-0.0201
Optimal handwidth	(0.201)
N	/.221 3170
IN	3170

 Table iii. Effect of reforms for years of education (ineffective)

Note: Reduced-form RDs. Conventional estimates are used. Standard errors are indicated within parenthesis. All calculations use local linear regression, with an optimal bandwidth and a triangular kernel.

Figure i. Estimates effect of reforms for years of education for different bandwidths Note: Conventional estimates are used. Dotted lines indicate 95% confidence interval. All calculations use local linear regression, with an optimal bandwidth and a triangular kernel. These models include country-reform fixed-effects.

Appendix C

We discuss the assumption of monotonicity and the exclusion restriction in the main article. Below we demonstrate that also (a) no sorting takes place around the reform using the McCrary's density graph and (b) that the cohorts just below and above the cut-off are similar in age, gender and the educational background of the parents.

Note: Density graph based on the pooled sample. Log difference in height: 0.0120 (0.0309).

	Gender	Age	Secondary Father	Secondary Mother
Estimate	-0.0283	0.00427	0.0427	-0.00781
	(0.0278)	(0.00981)	(0.0305)	(0.0323)
Optimal bandwidth	12.264	7.228	10.017	8.798
Ν	26084	15825	19556	16425

Table iv. Difference between treatment and control group on background variables

Note: Reduced-form RDs. Conventional estimates are used. Standard errors are indicated within parenthesis. All calculations use local linear regression, with an optimal bandwidth and a triangular kernel. These models include country-reform fixed effects.

Appendix D

Table v	v. 'Fuzzy'	RD results	for each individual	country-reform
---------	------------	------------	---------------------	----------------

Compulsory schooling reform	European Integration	Trust in European Parliament
Great Britain (1947)	0.0598	-0.0511
	(0.159)	(0.240)
Optimal bandwidth	5.098	5.479
Ν	1178	1575
First stage	0.976**	0.493**
	(0.276)	(0.224)
Great Britain (1972)	0.0330	0.655*
	(0.249)	(0.393)
Optimal bandwidth	8.383	9.057
Ν	2829	4399
First stage	0.329**	0.233**
	(0.152)	(0.108)
Netherlands (1974)	0.421	0.389+
	(0.342)	(0.202)
Optimal bandwidth	8.014	8.333
Ν	2838	4057
First Stage	0.281*	0.365**
	(0.160)	(0.133)
Denmark (1958)	0.0402	0.102
	(0.274)	(0.170)
Optimal bandwidth	9.612	11.243
N	2185	3463
First stage	0.378	0.450**
	(0.291)	(0.220)
S J (10(5)	0.077	0.0277
Sweden (1965)	0.272	-0.0357
	(0.302)	(0.276)
Optimal bandwidth	6.134	5.454
	1938	2127
First stage	0.346	0.333*
	(0.211)	(0.198)

Note: Fuzzy RDs. Conventional estimates are used. Standard errors are indicated within parenthesis. * denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01. All calculations use local linear regression, with an optimal bandwidth and a triangular kernel.

	European integration	Trust in European Parliament
Estimate	0.0600	0.0764**
	(0.0371)	(0.0373)
Optimal bandwidth	9.895	7.087
Ν	13,394	14,462

Table vi: Estimates reduced-form RD for Euroscepticism

Note: Conventional estimates are used. Standard errors are indicated within parenthesis. * denotes p < 0.1, ** denotes p < 0.05, *** denotes p < 0.01. All calculations use local linear regression, with an optimal bandwidth and a triangular kernel. These models include country-reform fixed effects.

Appendix F

We calculate the correlation coefficient between years of education and (a) European integration and (b) trust in the European Parliament for 10 cohorts just below the cut-off (control) and 10 cohorts just above the cut-off (treatment). The correlation coefficients are largely identical for the treatment and the control group for both dependent variables, indicating no large change in the relationship between years of education and EU-attitudes.

Table vii. Correlation between years of education and EU-attitudes

	European integration	Trust in European Parliament	
Treatment	0.111	0.135	
Control	0.0920	0.111	

Note: All coefficients significant at p < 0.01.