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APPENDIX A. GOTTSCHALK’S FUTURE-TREATMENT STRATEGY 
 
A third future treatment estimator was introduced by Gottschalk (1996). Like Mayer (1997), 
Gottschalk (1996) premises his analysis on the DGP of Figure 2 and derives a future treatment 
estimator from its covariance structure. Unlike Mayer, Gottschalk explicitly motivates his 
estimator with an argument that resembles our difference logic: to use the association between 𝐹 
and 𝑌 first to measure and then to subtract bias in the association between 𝑇 and 𝑌. 
 

Definition 4 (Gottschalk’s estimator1): Gottschalk’s estimator for the causal effect of 𝑇 on 𝑌, 
𝑏, is given by  

  𝑏% = 𝑏'( − 𝜎'+.( = 𝜎'( − (𝜎'+ − 𝜎'(𝜎(+) .   (A.1) 
 

This estimator is similar, but not identical, to the Mayer/difference estimator. Whereas the 
difference estimator subtracts two partial regression coefficients, 𝑏/ = 𝑏'(.+ − 𝑏'+.(, Gottschalk 
subtracts a conditional covariance from the unadjusted regression of 𝑌 on 𝑇.  

Like Mayer’s (1997) estimator, Gottschalk’s estimator is biased when 𝑈 affects 𝑇 and 𝐹 
differently, 𝑎 ≠ 𝑑. 

 
Result A.1 (bias of Gottschalk’s [1996] estimator in the best case): Gottschalk’s estimator is 
biased when data are generated by the model in Figure 2, 

  𝑏% = 𝑏 + 𝑎𝑐 61 − 8
9
+ 𝑎𝑑: = 𝑏 + 𝐵<=>𝑀% ,    (A.2) 

 
But in contrast to Mayer’s (1997) estimator, this estimator is not unbiased in the best-case 

model of Figure 2 when 𝑎 = 𝑑.  
 

Corollary A.1: Gottschalk’s estimator remains biased when data are generated by the model in 
Figure 2 and 𝑈 affects 𝑇 and 𝐹 in the same way, 𝑎 = 𝑑,  

  𝑏% = 𝑏 + 𝑎@𝑐 ≠ 𝑏.        (A.3) 
 
Like the Mayer/difference estimator, but unlike our control estimator, Gottschalk’s estimator can 
increase rather than decrease the bias from unobserved confounding when 𝑎 ≠ 𝑑. Like the 
Mayer/difference estimator, Gottschalk’s estimator strictly increases bias when 𝑎 and 𝑑 have 
opposite signs. Interestingly, however, unlike Mayer’s estimator, Gottschalk’s estimator is 
mostly bias reducing when 𝑎 and 𝑑 share the same sign and 𝑎 is strong or moderately strong. 
Indeed, for magnitudes of |𝑎| larger than about 0.42 (regardless of the value of 𝑑), Gottschalk’s 
estimator is strictly bias-reducing. 

 
1 Our notation is superficially different from Gottschalk’s original notation since we assume standardized 
variables.  
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APPENDIX B. FUTURE TREATMENTS AS INSTRUMENTAL VARIABLES 
 
This appendix evaluates the circumstances under which future treatments can, or cannot, serve as 
instrumental variables (IV). Instrumental variables analysis is a popular strategy for removing 
bias from unobserved confounding. With a valid IV, 𝐹, the causal effect of treatment 𝑇 on 
outcome 𝑌 in linear DPGs is consistently estimated by the covariance ratio 

  𝑏BC =
DEF
DEG

 .        (B.1) 

IV analysis in linear models requires two assumptions: (1) the instrumental variable must be 
associated with 𝑇 (“relevance”); and (2) the IV must be associated with the outcome only via 
paths that include the causal effect of the treatment on the outcome (“exclusion”) (Brito and 
Pearl 2002). If both assumptions are met, we say that the instrumental variable is valid. 

Future treatments are not valid instrumental variables in any of the DGPs considered in the 
main body of this paper. The key assumption motivating our future-treatment strategies–that 𝐹 is 
a proxy for the unobserved confounder, 𝑈–violates the exclusion assumption because it induces 
an association between 𝐹 and 𝑌 via the open path 𝐹 ← 𝑈 → 𝑌. 

For example, the instrumental variables estimator, using 𝐹 as instrumental variable, in data 
generated by Figure 2 would evaluate to   
 𝑏BC =

DEF
DEG

= J98KL8
98

= 𝑏 + L
9
≠ 𝑏 .      (B.2) 

Recalling that all standardized path parameters lie in the interval (−1, 1), it is obvious that the 
instrumental variables estimator in this case is strictly more biased than the unadjusted OLS 
estimator because  
 |𝐵<=>| = |𝑎𝑐| < | 9

L
| = |𝐵BC|, for all 𝑎, 𝑐 ≠ 0 .    (B.3) 

 Nonetheless, future treatments have previously been used as instrumental variables, when 
𝐹 was assumed not to be a proxy for the unobserved confounders 𝑈. For example, Duncan et al. 
(1997) cautiously defend such a scenario for the estimation of causal neighborhood effects. In 
their application, 𝑌 is children’s test scores, 𝑇 is parents’ neighborhood environment while living 
with the child, and 𝐹 is parents’ neighborhood environment after the child has moved out. Their 
central assumption is that 𝑈 can be partitioned into two independent components, as shown in 
Figure B.1: 𝑈P represents unobserved parenting quality, which affects child test scores and 
neighborhood choice while the child lives at home; and 𝑈Q represents parent’s residential 
preferences aside from child rearing considerations.  
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Figure B.1. Model in which future treatments, 𝐹, are a valid instrumental variable for the effect 𝑇 → 𝑌, 
because the unobservables, 𝑈, are suitably partitioned.  
 

If this model is true, then 𝐹 is indeed a valid instrument for the effect of 𝑇 on 𝑌, and the 
instrumental variables estimator evaluates to  
 𝑏BC =

DEF
DEG

= 9J8
98

= 𝑏.         (B.4) 

 As Duncan et al. (1997) have noted, this model may not be especially robust. 
Instrumental variables estimation would fail under small modifications of the original model, 
e.g., if parenting, 𝑈P, is associated with future neighborhood conditions (ibid: p. 249), perhaps 
because concerned parents move to better neighborhoods, or if parent’s neighborhood 
preferences, 𝑈Q, are associated with other unobserved factors, such as parental ability, that also 
affect child test scores (ibid: p. 230). We capture these scenarios in Figures B.2a and B.2b, in 
which the instrumental variable estimator evaluates to 𝑏BC = 𝑏 + RS

TRK98
≠ 𝑏  and  𝑏BC = 𝑏 + L

9
≠

𝑏, respectively. In both of these more elaborate scenarios, 𝐹 is not a valid instrumental variable 
because it is a proxy for one or another unobserved confounder, 𝑈P or 𝑈Q, of 𝑇 and 𝑌, and hence 
violates the exclusion condition via the open paths 𝐹 ← 𝑈P → 𝑌 and 𝐹 ← 𝑈Q → 𝑌, respectively. 

 

(a)            (b) 

   

Figure B.2. Two models in which future treatments are not valid instrumental variables for the 
effect 𝑇 → 𝑌. 
 
We further note that 𝐹 also fails as an instrumental variable even if 𝐹 is not a proxy for 
unobserved confounders of 𝑇 and 𝑌, namely in the presence of true state dependence or 
selection. True state dependence would occur in Duncan et al.’s (1997) scenario if parents 
develop a taste for the kind of neighborhood they live in (Deluca 2012), as shown in Figure B.3a. 
In this scenario, the exclusion assumption is violated because 𝐹 is associated with 𝑌 via the open 
path 𝐹 ← 𝑇 ← 𝑈P → 𝑌 (i.e. via a path that does not include the causal effect of 𝑇 on 𝑌). 
Consequently, the instrumental variables estimator is biased, 𝑏BC = 𝑏 + UTS

98KU
≠ 𝑏. 
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 (a)            (b) 

   
 
Figure B.3. True state dependence and selection invalidate future treatments as instrumental 
variables for the effect 𝑇 → 𝑌.  
 

Selection would occur if children’s test scores affect parents’ future residential choice, as 
shown in Figure B.3b (an admittedly far-fetched proposal, unless, e.g., families relocate in 
response to children experiencing academic difficulties at a local school). Here, the exclusion 
condition would be violated because 𝐹 is directly associated with 𝑌, and the instrumental 
variable estimator evaluates to  

𝑏BC = 𝑏 + V
98KV(JKTS)

≠ 𝑏 .       (B.5) 

In a final twist, although true state dependence (𝑇 → 𝐹) and selection (𝑌 → 𝐹) invalidate 
the use of future treatments as instrumental variables, Chan and Kuroki (2010) have shown that 
descendants of 𝑇 and 𝑌 (which could include future values of the treatment) can sometimes be 
used to remove unobserved confounding in linear models if true state dependence and selection 
are suitably mediated in more complicated DGPs. Their results are akin, but not identical, to 
instrumental variables analysis. To the best of our knowledge, Chan and Kuroki’s 
methodological results have not yet been used in empirical applications. 
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APPENDIX C. PROOFS OF RESULTS 11 AND 12 
 
The temporal order of variables is (𝑂, 𝑉, 𝑸, 𝑿) ≺ 	𝑇 ≺ 	𝑌 ≺ 	𝐹; the ordering of the variables in 
(𝑂, 𝑈, 𝑸, 𝑿) is irrelevant. As is usual in working with graphical causal models, we use the rules 
of d-separation and assume faithfulness (Pearl 2009).  
 
Proof of Result 11:  
We first show that, under Assumption 1, unobserved confounding between 𝑇 and 𝑌 conditional 
on 𝑿 implies 𝐹¬⊥ 𝑌|(𝑇, 𝑿).  

1. Confounding between 𝑇 and 𝑌 conditional on 𝑿 (which may b empty) implies a d-
connected path, 𝜋('(𝑂), from 𝑇 to 𝑌 via an unobserved parent of 𝑇, 𝑂 ∉ 𝑿: 𝑇 ← 𝑂… → 𝑌. 𝑂 is 
a non-collider on 𝜋('(𝑂), and all variables in 𝑿 that are on 𝜋('(𝑂), if any, are colliders on 
𝜋('(𝑂).  

2. Now show that unobserved confounding between 𝑇 and 𝑌 along the path 𝜋('(𝑂) 
implies the existence of a path between 𝐹 and 𝑌, 𝜋+' that is d-connected conditional on (𝑇, 𝑿). 
We distinguish two cases: 
 2.1. Suppose that 𝑂 is 𝑉. Then Assumption 1 and confounding along the path 𝜋('(𝑂) 
imply the existence of a path from 𝐹 to 𝑌 via 𝑂, 𝜋+'(𝑂): 𝐹 ← ⋯𝑂… → 𝑌, which is d-connected 
conditional on (𝑇, 𝑿) because (a) the path segment 𝐹 ← ⋯𝑂 of 𝜋+'(𝑂) is d-connected by 
Assumption 1; (b) the path segment 𝑂… → 𝑌 of 𝜋+'(𝑂) is d-connected because it is a path 
segment of 𝜋('(𝑂), which is d-connected by premise above; and (c) the entire path 𝜋+'(𝑂) is d-
connected because the variable 𝑂 ∉ 𝑿 that connects its two segments is either an unconditioned 
non-collider on 𝜋+'(𝑂), or a collider on 𝜋+'(𝑂) whose descendant 𝑇 is conditioned.  
 2.2. Suppose that 𝑂 is not 𝑉. Then Assumption 1 and confounding along 𝜋('(𝑂) imply 
the existence of a path from 𝐹 to 𝑌 via 𝑉, 𝜋+'(𝑉): 𝐹 ← ⋯𝑉 → 𝑇 ← 𝑂… → 𝑌, which is d-
connected conditional on (𝑇, 𝑿) because (a) the segment 𝐹 ← ⋯𝑉 → 𝑇 of 𝜋+'(𝑉) is d-
connected by Assumption 1, (b) the segment 𝑇 ← 𝑂… → 𝑌 of 𝜋+'(𝑉) is d-connected because it 
is the d-connected confounding path 𝜋('(𝑂), and the entire path of 𝜋+'(𝑉) is open because we 
condition on the collider 𝑇 that connects its two segments.  
 2.3. Since two variables that are d-connected via at least one path are statistically 
associated under the usual conditions (Verma and Pearl 1988), d-connection of either 𝜋+'(𝑂) or 
𝜋+'(𝑉) conditional on (𝑇, 𝑿) implies  𝐹¬⊥ 𝑌|(𝑇, 𝑿) 

3. By contraposition, conditional independence 𝐹 ⊥ 𝑌|(𝑇, 𝑿) implies the absence of 
confounding. ∎ 
 
Proof of Result 12: 
Since Assumption 2 implies Assumption 1, the first part of Result 12 is given by Result 11. To 
prove the second part, we need to show that 𝐹¬⊥ 𝑌|(𝑇, X) implies the presence of unobserved 
confounding between 𝑇 and 𝑌, conditional on X.  
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 1. 𝐹¬⊥ 𝑌|(𝑇, 𝑿) implies the existence of a path between 𝐹 and 𝑌, 𝜋'+ that is d-
connected conditional on 𝑇 and 𝑿.  

1.1. There are four possible types of paths between 𝐹 and 𝑌, depending on whether they 
start with an arrow into or out of 𝑌 and end with an arrow into or out of 𝐹.  
 Paths 𝜋'+ of the type 𝑌 → ⋯ → 𝐹 that do not contain colliders are ruled out by 
Assumption 3. Such paths containing colliders, 𝐶, are d-separated because the collider is 
unconditioned, 𝐶 ∉ (𝑇, 𝑿), as 𝑿 ≺ 𝑇 ≺ 𝑌 ≺ 𝐶.  
 Paths 𝜋'+ of the types 𝑌 ← ⋯ ← 𝐹 and 𝑌 → ⋯ ← 𝐹 are d-separated because they contain 
an unconditioned collider, 𝐶 ∉ (𝑇, 𝑿), as 𝑿 ≺ 𝑇 ≺ 𝐹 ≺ 𝐶. 
Therefore, for 𝜋'+ to be d-connected it must contain arrows into 𝑌 and 𝐹, 𝑌 ← ⋯ → 𝐹.  

1.2. For 𝜋'+ to be d-connected conditional on (𝑇, 𝑿) it must end with an arrow from an 
unobserved variable, 𝑅, into 𝐹, 𝑅 → 𝐹, because paths 𝜋'+ that end with 𝑿 → 𝐹 or 𝑇 → 𝐹 would 
be d-separated conditional on (𝑇, 𝑿), and paths 𝑃'+ that end with 𝑌 → 𝐹 are ruled out by 
Assumption 3. Clearly, 𝑅 is a non-collider on 𝜋'+.  

2. By assumption 2, 𝑅 ∈ 𝑸, which implies the d-connected path 𝜋(+, 𝑇 ← 𝑅 → 𝐹.  
3. It follows that there exists a non-causal path 𝜋(', 𝑇 ← 𝑅… → 𝑌, which is d-connected 

conditional on 𝑿 since its segment 𝑅… → 𝑌 is a segment on 𝜋'+, which is d-connected 
conditional on (𝑇, 𝑿), and 𝑅 is an unconditioned non-collider on 𝜋('.  

4. Since two variables that are d-connected via at least one path are statistically 
associated under the usual conditions (Verma and Pearl 1988), the d-connected path 𝜋(' 
represents unobserved confounding between 𝑇 and 𝑌 conditional on 𝑿. ∎ 
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APPENDIX D. REPLICATION OF MAYER (1997) 
 

Table D.1. Descriptives 
Means (standard deviations in parentheses); weighted 

 

  

Main Sample Analytic Sample
Mayer (1997) Replication Mayer (1997) Replication

Years of Education 12.793 12.838 (a) 12.886
(1.940) (1.928) (a) (1.957)

Log family income 10.687 11.840 (a) 11.938
(0.572) (0.447) (a) (0.357)

Log family size 1.647 1.576 (a) 1.609
(0.331) (0.331) (a) (0.338)

Parent is black 0.141 0.151 (a) 0.170
(0.347) (0.358) (a) (0.376)

Parent's age 40.127 40.691 (a) 40.899
(6.163) (5.908) (a) (5.646)

Parent's years of education 12.590 12.593 (a) 12.663
(2.722) (2.768) (a) (2.859)

Child is a boy 0.481 0.494 (a) 0.717
(0.498) (0.500) (a) (0.450)

Observations 3,275 3,357 1,853 1,513

Estimates as reported in Mayer (1997), Table A.2 (pp.162-163); (a) Estimates not directly reported 
in Mayer (1997)
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Table D.2. Full Regression Results 
OLS coefficient estimates (standard errors in parentheses); weighted 

 
  

Main Sample Analytic Sample
Unstandardized Coefficients Standardized Coefficients

Mayer (1997) Replication Mayer (1997) Replication

Log family income                  0.784 0.749 0.186 0.185
                                   (0.065) (0.074) (a) (0.038)
Log family size                    -0.714 -0.700 (a) -0.157
                                   (0.091) (0.092) (a) (0.025)
Parent is black                    0.257 0.276 (a) 0.031
                                   (0.091) (0.088) (a) (0.034)
Parent's age                       0.023 0.033 (a) 0.115
                                   (0.005) (0.005) (a) (0.025)
Parent's years of education        0.235 0.293 (a) 0.476
                                   (0.013) (0.011) (a) (0.026)
Child is a boy                     -0.032 -0.181 (a) 0.008
                                   (0.059) (0.057) (a) (0.026)
Constant 1.651 0.082 (a) -0.042
                                   (0.652) (0.824) (a) (0.030)

N                                  3,275 3,357 1,853 1,513
R2 0.265 0.274 (a) 0.301

Estimates as reported in Mayer (1997), Table B.6 (p.174) for main sample, Table 5.3 (p. 92) for 
analytic sample; (a) Estimates not directly reported in Mayer (1997)
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APPENDIX E. ANIMATION OF ANALYTICAL RESULTS 
 
Mathematica code to create interactive animations of our analytical results is available in the 
replication package to this article (http:// doi.org/10.3886/E104060V1). Here, we provide the 
code and still images. Using the Mathematica version enables readers to change the sliders to 
explore the graphs further. 
 
 
E.1 BEST-CASE SCENARIO: ABSOLUTE BIAS FACTORS: CONTROL, MAYER 
Figure 3 in the paper 
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E.2 BIAS MULTIPLIERS OF THE CONTROL AND MAYER/DIFFERENCE ESTIMATORS FOR a=d 
Table 1 & Result 8 in the paper 
 

 
 
  



- 11 - 

E.3 PURE SELECTION (NO CONFOUNDING) 
Equations 17 & 18 in the paper 
 
Bias Factor Control vs Mayer/Difference (note: OLS bias is 0) as function of selection, e. 

 
 
Estimates of Control and Mayer Estimators as function of selection, e  
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Bias in Control and Mayer Estimators as function of treatment eect, b  

 
 
Bias of Control and Mayer Estimators with a=d  
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E.4 SELECTION WITH CONFOUNDING 
 
OLS, Mayer/Difference, Control methods bias (absolute bias), a=d  

 
 
Bias factor of difference estimator  
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E.5 SELECTION WITH A¹D 
Table 2, Results 9&10 
 
Graph absolute bias, OLS, Control Difference  
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Graph absolute bias *factors*, OLS (ref), Control (blue), Difference (orange)  

 


