Supplementary Data

First synthesis and characterization of new impurities in obeticholic acid

Wei-Dong Feng,¹ Song-Ming Zhuo,² Fu-Li Zhang,^{1, 3}*

¹Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, P. R. of China

²Department of Pharmaceutical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. of China

³Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, P. R. of China

Contents:

- Figure S1. HRMS spectrum of compound 8.
- **Figure S2.** ¹H NMR spectrum of compound **8**.
- **Figure S3.** ¹³C NMR spectrum of compound **8**.
- Figure S4. FT-IR spectrum of compound 9.
- **Figure S5.** ¹H NMR spectrum of compound **9**.
- Figure S6. ¹³C NMR spectrum of compound 9.
- Figure S7. FT-IR spectrum of compound 10.
- **Figure S8.** ¹H NMR spectrum of compound **10**.
- Figure S9. ¹³C NMR spectrum of compound 10.
- Figure S10. FT-IR spectrum of impurity 1.
- Figure S11. HRMS spectrum of impurity 1.
- **Figure S12.** ¹H NMR spectrum of impurity **1**.
- Figure S13. ¹³C NMR spectrum of impurity 1.
- Figure S14. DEPT 135 spectrum of impurity 1.
- Figure S15. DEPT 90 spectrum of impurity 1.
- Figure S16. H-H COSY spectrum of impurity 1.

Figure S17. HSQC spectrum of impurity 1.

- Figure S18. HMBC spectrum of impurity 1.
- Figure S19. ROESY spectrum of impurity 1.
- Figure S20. HRMS spectrum of compound 11.
- **Figure S21.** ¹H NMR spectrum of compound **11**.
- Figure S22. ¹³C NMR spectrum of compound 11.
- Figure S23. FT-IR spectrum of compound 12.
- **Figure S24.** ¹H NMR spectrum of compound **12**.
- Figure S25. ¹³C NMR spectrum of compound 12.
- Figure S26. FT-IR spectrum of compound 13.
- **Figure S27.** ¹H NMR spectrum of compound **13**.
- **Figure S28.** ¹³C NMR spectrum of compound **13**.
- Figure S29. HRMS spectrum of compound 14.
- **Figure S30.** ¹H NMR spectrum of compound **14**.
- Figure S31. ¹³C NMR spectrum of compound 14.
- Figure S32. FT-IR spectrum of compound 15.

Figure S33. ¹H NMR spectrum of compound **15**.

- Figure S34. ¹³C NMR spectrum of compound 15.
- Figure S35. FT-IR spectrum of impurity 2.
- Figure S36. HRMS spectrum of impurity 2.
- **Figure S37.** ¹H NMR spectrum of impurity **2**.
- Figure S38. ¹³C NMR spectrum of impurity 2.
- Figure S39. DEPT 135 spectrum of impurity 2.
- Figure S40. DEPT 90 spectrum of impurity 2.
- Figure S41. H-H COSY spectrum of impurity 2.
- Figure S42. HSQC-1 spectrum of impurity 2.
- Figure S43. HSQC-2 spectrum of impurity 2.
- Figure S44. HMBC spectrum of impurity 2.

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date	7/27/2018 7:11:32 AM
Analysis Name Method Sample Name Comment	D:\Data\SHUJVFENX 20150915.m 14238-06-1	NZHANGFL-group(1423	88-00-1_KAO_01	Operator Instrument / Ser#	BDAL@DE maXis 4G 21240
Acquisition Para Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	1.0 Bar 220 °C 6.0 I/min ve Waste
Intens 8000 6000		371 3304	429.3336	6	+MS, 2.9min #170
4000- 2000- 0-+	 250 300	329.1565 .ці, інц. каріі. тапарторії (1990) 350	.3415 	489.3546	527.3320
Meas. n 429.33	n/z # Formula 336 1 C 26 H 46 Na O 3	Score m/z e 3 100.00 429.3339	rr [ppm] Mean 0.7	err [ppm] mSigma 0.7 8.4	rdb e Conf N-Rule 3.5 even ok

Figure S1. HRMS spectrum of compound 8.

Figure S2. ¹H NMR spectrum of compound 8.

Figure S3. ¹³C NMR spectrum of compound **8**.

D:\DATA\2019\20190724010.ispd

SHIMADZU

7/25/2019 1:45:50 PM

Figure S4. FT-IR spectrum of compound 9.

Figure S5. ¹H NMR spectrum of compound 9.

Figure S6. ¹³C NMR spectrum of compound 9.

D:\DATA\2019\20190724011.ispd

7/25/2019 1:54:34 PM

Figure S7. FT-IR spectrum of compound 10.

Figure S8. ¹H NMR spectrum of compound 10.

Figure S9. ¹³C NMR spectrum of compound 10.

SHIMADZU

Figure S10. FT-IR spectrum of impurity 1.

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\SHUJV 20150915.m 15021-03-1	FENXI\ZHANGFL-group	\15021-03-1_RC4	Acquisition E 4_01_13042.d Operator Instrument /	Date 9/15 BDA Ser# maX	5/2018 1:21:48 AM AL@DE Kis 4G 21240
Acquisition Para Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Of Set Collision Cell	Positive 4000 V fset -500 V I RF 600.0 Vpp	Set Ne Set Dry Set Dry Set Div	bulizer / Heater / Gas /ert Valve	1.0 Bar 220 °C 6.0 I/min Waste
Intens. x10 ⁵ 2.5 2.0 1.5 1.0 0.5 271	.1158	329.1572	1+ (M 387.32 369.3153	$\begin{array}{c c} & 1+ (J) & 1+ (I) \\ & 405.3368 \\ & 405.3368 \\ & 63 \\ & 6$	5 445.328	+MS, 2.7min #161
250	275 300	325 350	375	400 425	45	i0 475 m/z
Meas. m/z 405.3368 422.3635 427.3184	2 # Formula 3 1 C 26 H 45 O 5 1 C 26 H 48 N 5 1 C 26 H 44 N	Score m/ 3 100.00 405.336 O 3 100.00 422.362 a O 3 100.00 427.318	/z err [ppm] N 3 -1.3 9 -1.5 3 -0.3	lean err [ppm] m -1.1 -1.2 -0.3	nSigma ro 2.0 4 0.8 3 25.5 4	db e ⁻ Conf N-Rule 4.5 even ok 3.5 even ok 4.5 even ok

Figure S11. HRMS spectrum of impurity 1.

Figure S12. ¹H NMR spectrum of impurity 1.

Figure S13. ¹³C NMR spectrum of impurity 1.

Figure S14. DEPT 135 spectrum of impurity 1.

Figure S15. DEPT 90 spectrum of impurity 1.

Figure S16. H-H COSY spectrum of impurity 1.

Figure S17. HSQC spectrum of impurity 1.

fl (ppm)

Figure S18. HMBC spectrum of impurity 1.

Figure S19. ROESY spectrum of impurity 1.

Mass Spectrum SmartFormula Report

Figure S20. HRMS spectrum of compound 11.

Figure S21. ¹H NMR spectrum of compound 11.

Figure S22. ¹³C NMR spectrum of compound 11.

D:\DATA\2019\20190724012.ispd

7/25/2019 1:59:59 PM

Figure S23. FT-IR spectrum of compound 11.

Figure S24. ¹H NMR spectrum of compound 12.

Figure S25. ¹³C NMR spectrum of compound 12.

D:\DATA\2019\20190724013.ispd

7/25/2019 2:04:31 PM

Figure S26. FT-IR spectrum of compound 13.

Figure S27. ¹H NMR spectrum of compound **13**.

Figure S28. ¹³C NMR spectrum of compound 13.

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\SHUJVFENX 20150915.m 14237-68-1	\ZHANGFL-group\1423	7-68-1_RC3_01	Acquisition Date _13043.d Operator Instrument / Ser#	9/15/2018 1:28:54 AM BDAL@DE maXis 4G 21240
Acquisition Para Source Type Focus Scan Begin Scan End	a meter ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Valv	1.0 Bar r 220 °C 6.0 I/min ve Waste
Intens. x10 ⁵ 1.25 1.00 0.75 0.50 0.25 0.25 0.00	9 271.1152 	377 359.2944 341.2839 44	7.3052 3,94,3317 3,99,2 400	443.2253 467.272 443.2253 467.272 4	+MS, 2.5min #146 22 497.2837 500 m/z
Meas. m/z 377.3052 394.3317 399.2868	 # Formula 1 C 24 H 41 O 3 1 C 24 H 44 N O 3 1 C 24 H 40 Na O 3 	Score m/z ei 100.00 377.3050 100.00 394.3316 100.00 399.2870	rr [ppm] Mean -0.5 -0.3 0.4	err [ppm] mSigma -0.4 8.4 -0.2 5.6 0.4 4.5	rdb e ⁻ Conf N-Rule 4.5 even ok 3.5 even ok 4.5 even ok

Figure S29. HRMS spectrum of compound 14.

2.0

1.5

1.0

PPM

2.5

3.5

3.0

Figure S31. ¹³C NMR spectrum of compound 14.

D:\DATA\2019\20190724014.ispd

SHIMADZU

7/25/2019 2:09:47 PM

Figure S32. FT-IR spectrum of compound 15.

Figure S33. ¹H NMR spectrum of compound 15.

Figure S34. ¹³C NMR spectrum of compound 15.

🕀 SHIMADZU

9/28/2018 2:33:14 PM

Figure S35. FT-IR spectrum of impurity 2.

Figure S36. HRMS spectrum of impurity 2.

Figure S37. ¹H NMR spectrum of impurity **2**.

Figure S38. ¹³C NMR spectrum of impurity 2.

 70.945

 70.945

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 63.552

 70.173

 86.176

 96.173

 96.173

 96.173

 96.173

 97.173

 97.173

 98.870

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

 93.364

Figure S39. DEPT 135 spectrum of impurity 2.

130.336

Figure S40. DEPT 90 spectrum of impurity 2.

Figure S41. H-H COSY spectrum of impurity 2.

Figure S42. HSQC-1 spectrum of impurity 2.

fl (ppm)

Figure S43. HSQC-2 spectrum of impurity 2.

Figure S44. HMBC spectrum of impurity 2.