Supplementary Material

Nitrogen-doped carbon dots as a probe for the detection of Cu^{2+} and its cellular imaging

Ning Wang¹, Xuebing Li¹, Xuefang Yang¹, Zenglian Tian², Wei Bian^{*1}, Weihua Jia^{*2}

¹Shanxi Medical University, Taiyuan 030031

²Sixth Hospital of Shanxi Medical University. Taiyuan 030001.

Corresponding author. Email: sxykdx_bianwei@163.com

Figure. S1 Fluorescence emission spectra of NCDs under different excitation

Figure. S2 The UV-visible absorption spectra, fluorescence excitation (Ex) and

emission spectra (Em) of NCDs

Figure. S3 The effect of exposure to sunlight on fluorescence intensity of N-CDs

Figure. S4 The effect of pH on fluorescencec intensity of NCDs and Cu²⁺-

NCDs reaction system

Figure. S5 The effect of NCDs concentration on the detection of Cu²⁺

Figure. S6 The effect of reaction time on fluorescence intensity of Cu²⁺- NCDs

Figure. S7 The effects of different concentrations of Cu²⁺ on UV–vis spectra of

Figure. S8 The effect of temperature on fluorescence intensity of Cu²⁺-NCDs system