Method to select the patients from those without reimbursable enteral formulas (REF) prescription to compare healthcare cost and exit rate from the insurance with those with REF prescription.

p: Patient

 $U^1 = \{p_1^1, p_2^1 \cdots, p_n^1\}$: REF Group (n = 502)

 $U^2 = \{p_1^2, p_2^2 \cdots, p_m^2\}$: Matching patient group (m = 607)

 $c^{0}(p)$: Patient's average healthcare cost during the 6 months prior to the index month $c^{1}(p)$: Patient's healthcare cost during the index month

The smallest squared-sum (LSQ(S)) of the healthcare cost difference was defined as shown below for the discretionary S sub-set of U^2 (control patients).

$$LSQ(S) = \left(\frac{\sum_{p^2 \in S} c^0(p^2)}{\# S} - \frac{\sum_{i=1}^n c^0(p_i^1)}{n}\right)^2 + \left(\frac{\sum_{p^2 \in S} c^1(p^2)}{\# S} - \frac{\sum_{i=1}^n c^1(p_i^1)}{n}\right)^2$$

The $S^{matched}$ sub-set of U^2 , which matches U^1 , was defined as follows.

$$S^{matched} = \{ LSQ(S^{matched}) = minLSQ(S) | S \subset U^2 \}$$

In reality, minLSQ(S) was calculated by choosing from a universe of 10,000 random subset combinations, a combination that would yield ≥ 100 patients.