
Appendix 1 

In this appendix, we give a brief introduction to the mathematical tools used throughout the article. Namely, 

the EKF, which is the main retrieval tool for the tomography problem, and the EM framework which allows 

to use a reduced model (in a broad sense) instead of the more appropriate one for the problem to be solved. 

Extended Kalman filter 

The EKF45 is a technique for state-estimation in observation-evolution problems. It is a non-linear extension 

to the linear Kalman Filter,31 which has been used, for example, in estimation of physiological parameters.15 

It was also employed to perform optical tomography on phantoms with good results.7 Considering a state-

evolution model written in the form 

1 ( , ) , ~ (0, )t t t t t tx F x u N Qη η+ = +  (8) 

1 ( , ) , ~ (0, )t t t t t ty G x u N Rν ν+ = +  (9) 

where F is the state-transition operator, G is the observation operator, ηt and νt are noise terms following a 

Normal distribution N(0, X) with mean 0 and covariance matrix X and ut is a control variable. In this work, 

we used the state-transition operator as: 
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and the measurement is the observation operator. The EKF uses a linearization of the non-linear operators F 

and G, and it is suitable for problems with weak non-linearities. The covariance matrices Qt and Rt are the 

process and measurement covariances, respectively. They determine the uncertainty of the current estimate 

xt and yt. The method consists of two steps: the prediction step, where the unknown 1tx +  evolves according 

to the transition operator F, and the updating step, where the update is performed according to the predicted 

state and corrected by the observation operator G. The entire process contemplates the presence of additive 



Gaussian noise in the evolution as well as in the measurement. The expressions for the predict and update 

equations for step 1t ≥  are given by29: 
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where | 1|( ), ( )t t t t t t
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x x +

∂ ∂′ = ′ =
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 and Γ is the evolution covariance matrix, which evolves by 

accumulating information of prior steps given that the evolution relates the transition and observation 

operators (specifically, linearizations of them). The subscript * | t  is reserved for variables in the prediction 

step, while the subscript * | 1t +  is used for variables in the update step. 

Error modeling 

The EM approach lies in the replacement of a given model A, which can represent correctly a given 

situation, for another model Ah which can be a simplification or a model which does not work as well as the 

first30,35,47 

In this way, we can use Ah in replacement of A by performing the following calculation: 
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where ( )xε  is defined as the modeling error. By creating samples and evaluating them using both models, it 

is possible to construct an empirical approximation to the EM distribution. Precisely, let l be the sample size, 



and { }(1) ( ), , lS x x=  be the sample. Then, we evaluate them using both models and constructing an array 

of EM with the ith element defined as 

( ) ( )( ) ( ).i i
i hE A x A x= −  

The true EM distribution can be estimated and used. However, if the sample allows it, it is possible 

to use a Normal approximation to the EM distribution. In order to add this information to the EKF, we 

substract the mean of the EM e0 as well as add the empirical covariance of the sample 
hxΓ  to the parameter 

covariance, and adding the empirical covariance of the EM ΓH to the measurement covariance R, i.e. 
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In this work, samples containing only spherical inclusions were used. This can be seen as a form of 

(soft) prior information because the error mean and covariance were calculated using those samples. In 

Figure 9, a comparison between the simulation and the retrieval processes can be seen. The output of the 

simulations is used to feed the retrieval algorithm. Please note that even though the inclusions in the 

simulations are well defined (spheres), during the retrieval process, no geometrical information is supplied 

to the EKF. The EM approach may introduce a bias if a non-zero mean e0 is obtained, thus suggesting that in 

situations where the approximated model works properly, the corrected one may be biased, lowering 

precision, resolution, etc. Finally, for complex shaped non-scattering region,3 the DA-EM methodology is 

suitable. However, the sample generation should be modified using Gaussian smoothness prior7 instead of 

an ensemble of spheres. This prior generates complex random samples, resulting in better resolution and 

specificity of the retrieval process. 

 



 

Figure 9. Scheme of the phases of the retrieval process. Left: an ensemble of simulations is performed for 

different (random) spherical inclusions. To this end, the inclusion radio (r), its center location (c), and their 

optical properties aμ  and sμ′  are drawn. The optical properties of the background are kept constant. The 

outputs of the simulations are the exitances for both DA and RTE. Finally, the mean error modeling (e0), the 

error measurement covariance ( )HΓ , and the sample covariance ( )
hxΓ  are calculated. Right: an estimation 

of the optical properties is calculated for each node in the domain. To accomplish this operation, the 

objective measured exitance, (e0), ( )HΓ , ( )
hxΓ  and the DA are used in the EKF machinery, as explained 

above. DA: diffusion approximation; RTE: radiative transfer equation. 

 

 


