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Introduction5

The supporting information presented here includes an6

extended method on the data acquisition and abstraction7

time-series.8

Data acquisition9

Precipitation and potential evapotranspiration10

We obtained monthly mean precipitation and PET series for11

all 43 districts in the study area within the states of Punjab12

and Haryana from the Indian Meteorological Department for13

the period 1951-2010. Monthly mean precipitation data for14

less than 4% spread over all districts were missing for the15

period 2006-2010; for those missing districts and months16

we used linear interpolation of values from neighboring17

districts. PET between 1951 and 2010 was calculated using18

mean temperature (Tmean), net radiation (Rnet), and ground19

heat flux (G) according to Allen et al. (1998). Monthly20

mean precipitation and PET were then converted into daily21

values (in units of mm/day) as model input by uniformly22

distributing them over each month. District-wide values23

were interpolated onto a uniform 10 x 10 km grid over24

the study area (Figures S3a and b) by determining the25

dominant district associated with each grid cell. The spatial26

distribution of mean precipitation is related to topographic27

elevation, with higher rates in the northeast where the land28

surface rises towards the Himalayan front. Similarly, PET29

is topographically controlled; rates reduce to the northeast30

as the land surface rises towards the Himalaya and mean31

temperatures decrease.32
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Figure S1. Structure of a single model grid cell of the simplified
WaSim model.

Table S1. Calibrated irrigation efficiencies (CIE) for each crop
type

Crop type from Moulds et al. (2018) CIE (-)
Bajra 0.7
Barley 0.7
Cotton 0.3
Fruit 0.35
Gram 0.62
Groundnut 0.7
Maize 0.7
Other cereal (kharif) 0.7
Ohter cereal (rabi) 0.3
Other pulse (kharif) 0.3
Other pulse (rabi) 0.41
Ragi 0.3
Rapeseed 0.5
Rice (autumn) 0.69
Rice (summer) 0.7
Rice (winter) 0.7
Sorghum (kharif) 0.35
Sorghum (rabi) 0.36
Sugarcane 0.7

Abstraction 1

Estimation of total groundwater abstraction (billion cubic 2

meters, bcm) has been carried out by the Central 3

Groundwater Board (CGWB) using tube well density records 4

for all districts in the study area for the years 2004, 2009, 5

and 2011 (CGWB 2006, 2011, 2014). To simulate the 6

groundwater level dynamics, however, we require monthly 7

mean abstraction data across the region, which have not been 8

previously reported. An alternative approach to estimating 9

monthly groundwater abstraction for irrigation is to calculate 10

the deficit between crop water requirements and effective 11

precipitation, as demonstrated for example by Daccache and 12

others Daccache et al. (2014). We adopted this approach, 13

using the soil water balance model of Hess et al. (2000) 14

and India-wide annual land use/land cover maps produced by 15

Moulds (2016) for the period 1951 to 2010 with the toolbox 16

of Moulds et al. (2015). For more detail see below. This 17

provided us with a time series of monthly mean groundwater 18

abstraction volumes per 5 x 5 km grid cells (bcm) over the 19

period 1950-2010, which was recalculated for our 10 x 10 km 20

grid (Figure S3c). We assumed that abstraction rates prior 21

to this period are the same as those for 1951. Modeled 22

abstraction rates are highest in the northern part of the study 23

area with a general decline towards the south and away from 24

the Himalayan front. Our map of modeled mean abstraction 25

shows the same spatial pattern as that derived by Cheema 26

et al. (2014), who used the Soil Water Assessment Tool 27

(SWAT) model to estimate groundwater abstraction for 2007 28

for the states of Punjab and Haryana. 29

Daily gridded groundwater abstraction time-series were 30

produced using the WaSim one-dimensional soil water 31

balance and crop water demand model (Hess et al. 2000), 32

which has been used in the past to simulate irrigation 33

requirements (Knox et al. 1997), groundwater recharge 34

(Holman et al. 2009) and for catchment land use and water 35

balance studies in temperate (Hess et al. 2010; Holman et al. 36

2011) and semi-arid (Gada 2014) environments. The original 37

WaSim code includes four subsurface layers consisting of 38

a topsoil layer, an active root zone, unsaturated zone and a 39

Prepared using sagej.cls



2 Progress in Physical Geography: Earth and Environment XX(X)

Abs (bcm)
0.0 - 0.1

0.1 - 0.3

0.3 - 0.5

0.5 - 0.7

0.7 - 1.1

1.1 - 1.7

1.7 - 3.7

a b

Figure S2. Simulated (a) and observed (b) district-wise annual groundwater abstraction for the year 2011 in billions of cubic
meters (bcm).

saturated zone layer. In this study, a simplified version of the1

model was implemented which only includes the topsoil and2

active root zone layers. A description of the model structure3

and the datasets used to parameterise and drive the model is4

provided below. Hess et al. (2000) provide a full description5

of the model and the equations that underpin it.6

The simplified WaSim model was implemented on a 57

km grid across the whole of India. Each grid cell includes8

parameterisations of the land surface (crop types), topsoil9

and active root zone (Figure S1). Within each grid cell the10

soil type is fixed, but the land surface may consist of multiple11

crop types that can change over time. The soil water balance12

is solved for each of these crop types separately.13

The model was driven by daily gridded rainfall and14

potential evapotranspiration data from 1951 to 2014. Rainfall15

time-series for each cell were derived by combining two16

datasets. For the period 1951 – 1997 data were extracted17

from the Indian Meteorological Department’s 1◦ daily18

gridded dataset (Rajeevan et al. 2006). For the period 199819

– 2014 daily rainfall values were derived from Tropical20

Rainfall Measuring Mission (TRMM) 3B42-V7 dataset21

(Huffman et al. 2007). Daily potential evapotranspiration22

(PET) rates were also constructed from two data sets.23

Between 2000 and 2014 values were obtained from NASA’s24

MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux25

product (ORNL DAAC 2018). Between 1951 and 199926

values were extracted from the CRU TS3.21 dataset27

(Harris et al. 2014), which were then bias-corrected against28

the MODIS data using the equidistant quantile matching29

approach of Li et al. (2010).30

The soil receives water from infiltration of rainfall and31

irrigation water. Infiltration is calculated as the gross input32

minus surface runoff. Any water that falls onto saturated soil33

is assumed to runoff due to saturation excess. Infiltration34

excess runoff is also simulated using the SCS-curve method35

(Hawkins et al. 1985).36

The soil loses water by three main mechanisms. Firstly, 1

water can evaporate directly from the topsoil based on the 2

method of Ritchie (1972). Transpiration from the active root 3

zone also contributes to losses, the rate of which depends 4

on soil water availability and crop water demand. Finally, 5

if the active root zone water content exceeds field capacity, 6

a portion of the excess will drain based on the exponential 7

relationship developed by Raes and van Aelst (1985). 8

Annual gridded crop coverage maps produced by Moulds 9

et al. (2018) were used to update the land surface 10

parameterisation of the model each year. These maps include 11

the proportional coverage of 23 different crop types across 12

India. To account for the dynamic intra-annual development 13

of crop coverage and water demand, quantitative information 14

on crop growth cycles, water requirements (Brouwer and 15

Heibloem 1985) and root depth (Allen et al. 1998) were 16

used to parameterise these aspects of the model. Soil storage 17

capacity and drainage behaviour was parameterised using 18

hydraulic properties of soil texture classes (Saxton and Rawls 19

2006) in conjunction with the global map of soil texture 20

produced as part of the Harmonized World Soil Database 21

(Fischer et al. 2008). 22

The scheduling of irrigation was based on the detailed field 23

survey of Indian irrigation strategies undertaken by O’Keeffe 24

et al. (2016). They found that rather than satisfying crop 25

water requirements on a daily basis, farmers tend to saturate 26

(or even pond) the soil and then wait for a number of days 27

before they irrigate again. Furthermore, the time between 28

irrigation depends on the water demand of the crop and 29

climatic conditions. Accordingly, it was decided to include 30

a scheduling system in the model that assumes that farmers 31

apply irrigation up to the field capacity of the soil. Once this 32

is reached, they will wait until the plants become stressed 33

under dry soil conditions (permanent wilting point) before 34

irrigating again. For rice paddy fields there is the additional 35

preparation required whereby, the field is flooded. This was 36
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Figure S3. Maps of 10 x 10 km gridded mean (a) precipitation (p) and (b) PET (e) for 1974-2010, mean abstraction (w) for (c)
1974-2010, (d) 1974-1979, (e) 2006-2010, (f) the difference in abstraction between these two five-year periods, the mean
groundwater level for (g) 1974 and (h) 2010, and (i) the change in groundwater level between 1974 and 2010.

accounted for by assuming that farmers maintain a 20 cm1

pond of water on the fields.2

The model was run on a daily time-step from 1951 to3

2014 and a daily gridded time-series of total irrigation4

was produced. Moulds et al. (2018) also produced gridded5

time-series of the proportion of irrigation water taken from6

groundwater. These data were used to convert the estimated7

total irrigation time-series into groundwater abstraction. A8

key source of uncertainty in the estimated groundwater9

abstracted is the irrigation efficiency i.e. the proportion10

of the total irrigation applied that is beneficially used by11

the crop. Inefficiencies may stem from the leakages in the12

conveyance system or other equipment and other external13

factors not included in the model such as wind drift losses.14

Field studies indicate that they often depend on the particular15

type of irrigation method employed (Martin and Gilley 1993)16

and can range from 30 to 90% (Narayanamoorthy 2009).17

Accordingly, this parameter was calibrated on a crop by crop18

basis using the Indian Central Ground Water Board estimates19

of district-wise groundwater abstraction for the year 201120

as a calibration dataset (Table S1). Figure S2 compares 1

the simulated and observed 2011 groundwater abstraction 2

for each district of India. The model captures the spatial 3

distribution of groundwater abstraction and achieves a R2 4

score of 0.58 indicating that it captures just under 60% of the 5

variance in district-wise abstraction data. Overall, the model 6

shows a small negative bias of 0.03 billion cubic meters 7

(bcm). 8

Groundwater level data 9

The data were collected for the period 1974-2010 from 10

borehole databases maintained by the state groundwater 11

departments of Haryana and Punjab, and by the CGWB. 12

The state water level data contain measurements from 13

boreholes taken twice a year in June and October since 14

1973. The CGWB data contain levels measured in boreholes 15

approximately four times each year, typically in January, 16

May, August and November, from 2002 to 2010. Joshi et al. 17

(In review) compiled observations from 4417 wells for the 18

period of 1974-2010 and prepared pre-monsoon (May-June) 19
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Figure S4. Relationships between precipitation, PET, abstraction, and groundwater level changes. a) Annual precipitation,
abstraction and PET for grid cells in group 1 that show groundwater level rise over the period 1974-2010. (b) Annual precipitation,
abstraction and PET for grid cells in group 2 that show groundwater level fall. (c) Groundwater level change plotted against total
abstraction over the period 1974-2010 for grid cells in group 1. Note the lack of a clear relationship. (d) Groundwater level change
plotted against total abstraction for grid cells in group 2. Note the general decline in water level with increasing total abstraction,
albeit with high levels of scatter.

and post-monsoon (October-November) groundwater level1

maps at a grid cell resolution of 1.5 km using a kriging2

geostatistical approach. For the modeling described here, we3

averaged the groundwater levels maps to our 10 x 10 km grid.4

Pre-monsoon water levels for 1974 and 2010 are shown in5

Figures S3g and S3h.6

Groundwater levels in 1974 were generally within 2 m7

of the surface across much of the study area, except in8

the south west where they could be up to 30 m below9

ground (Figure S3g). The groundwater level surface for10

2010 (Figure S3h) is notably different, with deep (20-30 m)11

groundwater levels in much of the northern part of the study12

area and along the Ghaggar–Hakra paleochannel (Figure13

1, Singh et al. 2017). The difference between these two14

surfaces (Figure S3i) shows the change in the groundwater15

table, which can be separated into two distinct zones ; water16

levels in the northeast have generally declined, while those17

in the southwest lvels have generally risen. This pattern18

broadly matches the spatial variation in mean abstraction19

rates, with higher abstraction rates in the north and east20

where groundwater levels have declined (Figure S3).21

To begin to explore the relationships between precipita-22

tion, PET, abstraction, and water level change, we extract23

values of these variables for two groups of grid cells: those24

Table S2. Results of Mann-Kendall trend test and Sen’s slope

Variable Mean τ p Sen’s slope
(mm/yr) (mm/yr)

Rainfall (group 1) 416 -0.31 0.11 -4.7
Rainfall (group 2) 526 -0.21 0.08 -3.7
PET (group 1) 2399 0.24 0.05 0.7
PET (group 2) 2362 0.25 0.04 0.6
Abstraction (group 1) 212 0.72 0.00 6.5
Abstraction (group 2) 350 0.67 0.00 6.1

– where groundwater levels have risen over the period 1974- 1

2010 (group 1) and those where levels have declined (group 2

2). This initial analysis ignores the spatial variations in and 3

correlations between variables, and considers only their vari- 4

ation in time. Time series of annual mean precipitation, PET 5

and abstraction are plotted for these two groups in Figure S4. 6

Visual inspection of these series suggests declining trends 7

in the precipitation and rising trends in abstraction for both 8

groups. We use the Mann-Kendall test (Hipel and McLeod 9

1994) to estimate Kendall’s τ and its significance level for 10

each time series trend within each group of cells (Table S2). 11

This identifies trends in PET and abstraction that are signifi- 12

cant at the p=0.05 level in the PET and abstraction timeseries 13

for both groups. Precipitation trends are significant at p=0.11 14

for group 1 and p=0.08 for group 2. We use the Sen slope 15

(Sen 1968) to estimate the change in these driving variables 16

between 1974 and 2010. For PET this is negligible (+0.6 17

and +0.7 mm/year for group 1 and 2, respectively); for 18

abstraction, the change is +6.5 and +6.1 mm/year for group 19

1 and 2, respectively; and for precipitation it is -4.7 and - 20

3.7 mm/year for group 1 and 2, respectively. Averaging the 21

abstraction rates over the start period (1974-1979) and end 22

period (2006-2010) for the two groups of cells shows that 23

has abstraction rates have risen from 104 to 272 mm/year 24

across group 1 cells, and from 205 to 414 mm/year across 25

group 2. 26

There appears to be little correlation between total 27

groundwater abstraction over the period 1974-2010 and rise 28

in groundwater level for cells in group 1 (Figure S4c), 29

with a correlation coefficient of 0.03. In contrast, there 30

is a weak negative relationship between total abstraction 31

and decline in groundwater level for cells in group 2, 32

with a correlation coefficient of -0.34 (Figure S4d). Trend 33

lines of this relationship for group 2 cells, as estimated by 34

Sen’s method and by linear regression with the intercept 35
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set to zero, are -0.63 and -0.84, respectively, and the1

coefficient of determination (r2) for the linear regression2

model is 0.12. To explore whether variations in total rainfall3

or PET could explain the groundwater decline in the4

group 2 cells over the observational period, two additional5

multiple linear regression models were constructed: the first6

using total abstraction and total rainfall as the independent7

variables, and the second using total abstraction, rainfall,8

and PET. These regressions were performed using the non-9

negative least squares (nnls) package in the R programming10

environment Mullen and Stokkum (2012) but did not identify11

models with higher r2 values.12
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