Beyond Coups: Terrorism and Military Involvement in Politics — Online Appendix—

Contents

- A Conceptualizing Military Involvement in Politics p.2
- B1 Summary Statistics p.3
- B2 Table 2: full results p.3
- B3 Military Participation in Government (MPG) p.5
- B4 Defense minister is a military officer p.7
- B5 Ordered probit p.9
- B6 Probit models with random-effects p.11
- B7 Rare event p.13
- B8 The role of political regimes: a conditional effect p.15
- C Illustrative case studies p.17

A Conceptualizing Military Involvement in Politics

Military Involvement in Politics (MIP) refers to actions and processes where the military itself or decision-makers allow the military to exercise any kind of political power or/and influence policy decisions. In line with some well-established as well more recent civil-military relations literature, we understand the military as a political actor (Brooks, 2019; Hundman and Parkinson, 2019; Huntington, 1957; Ruffa et al., 2013; White, 2017). As Brooks writes, "the military has long been treated as an exceptional actor, in part because it controls the most lethal forms of armed force in the state and has the power to directly oust political leaders from office. While the military's coercive power is important, however, its political power is not reducible to it" (Brooks, 2019, p.391). MIP does not only concern the domain of high politics but also of bureaucratic politics, such as an increase in autonomy in defense spending.

MIP ranges from low levels of involvement in politics, when the militaries are involved in routine processes of military reforms or defense budget issues, to high levels involvement, for instance when the military enters the domain of 'high' politics and is involved in foreign policy debates and the drafting of constitutions. Any country has its own 'normal' level of MIP as a baseline, which may increase following specific shocks, such as terrorist threats and attacks, as in this paper. From this perspective, any country not only autocracies but also democracies - has some levels of MIP. Even in democratic countries, as we have seen in the case of France, with a strong norm of civilian control, MIP increases following an increase in terrorist attacks and the threat of terrorism violence. In autocratic countries, with a higher level of MIP as a baseline, we may observe similar phenomena. As Brooks points out, neglecting the political nature of the military and of its involvement in politics "also creates an artificial division between the study of the military in authoritarian contexts and in democracies by obscuring similarities in the way the military can influence politics in both" (Brooks, 2019, p. 391). MIP as a concept allows us to study both democratic and authoritarian regimes together and to recognize the political nature of the military, even when subordinated to civilian authorities.

Our conceptualization of MIP is similar to Finer's modes of military intervention but recognizes the political 'actorness' of the military more explicitly (Finer, 2017; Nordlinger, 1977; Stepan, 2015). Our concept of MIP is similar to White's recent "military participation in politics" which is "also plausible in all states" (White, 2017, p.580), but it is broader as we capture all kinds of exercise of political power, even an increase in autonomy. MIP is conceptually and empirically distinct from a coup d'état. While MIP includes the whole range of actions and processes by which the military exercises political power, a coup d'état is limited to the actions and processes to take over the government. While coups d'état are overall rare events, all countries have some levels of involvement in politics. Empirically, successful coups are very rare events and less than 2% of our country-year experienced a successful coup. Not surprisingly, the correlation between e.g., the ICRG level of military involvement in politics and the occurrence of successful coups is only 12%, and slightly higher, 19%, with attempted coups (a proxy for coup risk).

B1 Summary Statistics

Table B1: Summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
Military in Politics (ln)	1.39	0.44	0.69	2.1	2271
Is Defense Minister a Military Officer?	0.32	0.47	0	1	2114
MPG (ln)	0.04	0.08	0	0.69	2197
Terrorism dummy (t-1)	0.6	0.49	0	1	2271
Terrorism (ln,t-1)	1.45	1.6	0	6.31	2271
Domestic terrorism (ln, t-1)	1.06	1.48	0	6.26	2271
Transnational terrorism (ln, t-1)	0.19	0.43	0	2.3	2271
Pr Terrorism (ln, t-1)	3.89	0.69	2.02	4.62	2258
Pr Domestic Terrorism (ln, t-1)	3.65	0.62	1.55	4.62	2258
Pr Transnational Terrorism (ln, t-1)	0.13	0.06	0.04	0.77	2250
Population (ln)	16.27	1.51	12.81	20.98	2271
GDP per capita (ln)	8.34	1.57	4.76	11.51	2271
Polity score	3.02	6.92	-10	10	2271
Regime durability (ln)	2.63	1.29	0	5.28	2271
Leader tenure (ln)	1.76	0.81	0.69	3.85	2271
Corruption (ln)	1.55	0.32	0.77	2.1	2271
Personal regime	0.13	0.33	0	1	2271
Military regime	0.02	0.15	0	1	2271
Single-party regime	0.15	0.36	0	1	2271
MilPol in neighborhood	1.47	0.33	0	2.04	2271
MPG in neighbor (ln)	0.05	0.05	0	0.51	2271
Leader tenure (ln)	1.76	0.81	0.69	3.85	2271
Coup attempt	0.03	0.17	0	1	2271
Coup attempt (last 5 years)	0.11	0.31	0	1	2271
Low-intensity civil war	0.12	0.33	0	1	2271
High-intensity civil war	0.06	0.23	0	1	2271
Interstate conflict	0.03	0.17	0	1	2271
\mathbf{t}	1.96	5.44	0	29	2250
t2	33.39	120.62	0	841	2250
t3	690.75	2968.66	0	24389	2250

B2 Table 2: full results

Table B2: Military Involvement in Politics (ICRG) and Terrorism: full results

	(i)	(ii)	(iii)	(iv)	(++)	(vi)	(vii)
Population (ln)	0.172	0.163	0.157	0.136	$\frac{(v)}{0.176}$	0.176	0.098
r optilation (m)	(0.163)	(0.164)	(0.164)	(0.165)	(0.165)	(0.167)	(0.163)
GDP per capita (ln)	-0.048	-0.055	-0.053	-0.059	-0.047	-0.050	-0.054
GBT per capita (m)	(0.059)	(0.059)	(0.060)	(0.055)	(0.061)	(0.063)	(0.060)
Polity score	-0.012***	-0.012***	-0.012***	-0.011***	-0.012***	-0.012***	-0.012***
1 6110, 20010	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Regime durability (ln)	-0.032**	-0.032**	-0.033**	-0.034**	-0.030**	-0.032**	-0.032**
	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.014)	(0.013)
Leader tenure (ln)	-0.011	-0.011	-0.011	-0.013	-0.010	-0.010	-0.010
· /	(0.013)	(0.013)	(0.013)	(0.012)	(0.012)	(0.013)	(0.012)
Corruption (ln)	0.189***	0.184***	0.186***	0.228***	0.189***	0.192***	0.223***
-	(0.057)	(0.056)	(0.057)	(0.060)	(0.057)	(0.059)	(0.058)
Personal regime	$0.035^{'}$	0.042	0.042	0.039	0.043	0.043	0.017
	(0.065)	(0.066)	(0.067)	(0.062)	(0.067)	(0.068)	(0.064)
Military regime	0.139^{***}	0.124^{***}	0.123^{**}	0.137^{**}	0.140***	0.140**	0.138**
	(0.051)	(0.047)	(0.051)	(0.056)	(0.052)	(0.056)	(0.056)
Single-party regime	-0.270***	-0.271***	-0.273***	-0.272***	-0.261***	-0.269***	-0.254***
	(0.083)	(0.081)	(0.087)	(0.087)	(0.084)	(0.088)	(0.089)
MilPol in neighborhood	0.098	0.087	0.094	0.112	0.095	0.101	0.135
	(0.101)	(0.101)	(0.101)	(0.102)	(0.102)	(0.104)	(0.101)
Coup attempt	0.067**	0.065**	0.067^{**}	0.070**	0.070**	0.070**	0.056*
	(0.032)	(0.032)	(0.031)	(0.031)	(0.033)	(0.032)	(0.031)
Coup attempt (last 5 ys)	0.031	0.034	0.031	0.027	0.033	0.030	0.019
	(0.029)	(0.029)	(0.029)	(0.028)	(0.029)	(0.030)	(0.030)
Low-intensity civil war	0.048*	0.035	0.038	0.049*	0.048*	0.052**	0.050**
	(0.026)	(0.025)	(0.024)	(0.025)	(0.025)	(0.023)	(0.025)
High-intensity civil war	0.072*	0.046	0.049	0.076*	0.070*	0.076**	0.077*
7	(0.041)	(0.038)	(0.038)	(0.039)	(0.041)	(0.037)	(0.041)
Interstate conflict	0.046	0.041	0.044	0.041	0.044	0.046	0.041
T (1.1)	(0.038)	(0.038)	(0.037)	(0.035)	(0.038)	(0.039)	(0.035)
Terrorism dummy (t-1)	0.042***						
T (l. 1)	(0.015)	0.023***					
Terrorism (ln,t-1)							
Demostis temovisms (le. 4.1)		(0.007)	0.022***				
Domestic terrorism (ln, t-1)			(0.022)				
Transportional terrorism (ln. + 1)			(0.000)	0.016			
Transnational terrorism (ln, t-1)				(0.016)			
Pr Terrorism (ln, t-1)				(0.013)	0.036***		
11 Terrorism (m, t-1)					(0.014)		
Pr Domestic Terrorism (ln, t-1)					(0.014)	0.020	
11 Domestic Terrorism (m, t-1)						(0.043)	
Pr Transnational Terrorism (ln, t-1)						(0.040)	0.343
11 Italishadollai Terrorishi (ili, t-1)							(0.297)
Constant	-1.279	-1.048	-0.969	-0.655	-1.455	-1.367	-0.161
Composition	(2.672)	(2.676)	(2.683)	(2.722)	(2.743)	(2.762)	(2.683)
Observations	2247	2247	2247	2361	2235	2235	2312
O DDG1 VAUIOID	4441	2241	4441	2001	2200	2200	2012

^{*}p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses are clustered at country level. Two-way fixed-effects OLS.

B3 Military Participation in Government (MPG)

We employ two additional objective and observable measures of military involvement in politics. The first one is taken from White (2017), who has recently introduced the Military Participation in Government (MPG) Dataset. It captures the proportion of a state's cabinet, state council, or equivalent that is made up of military officers. This is a human-coded dataset that includes all politically important positions in the government's executive branch (e.g., cabinets, state councils, revolutionary command councils, presidiums, and privy councils). As such, the proportion of a government's positions held by state armed actors helps us to capture more broadly the terrorism-MIP nexus. We exclude all instances of successful coups to ensure that they do not affect the measurement of our dependent variables.

Table A3 shows our main results using White's (2017) measure of military participation in politics (MPG). Overall, the results are consistent with those reported in the main article. Like in Table 1, (ICRG measure), The table presents OLS estimates with log-transformations of both MPG and the terrorism variables. Therefore, a 10% increase in the total number of terrorist attacks (Terrorism) is now associated with an increase in MPG of about 0.06%. However, when we turn to the ex-ante probabilities of terrorism, we find that a 10% increase in the probability of domestic terrorism is related to a 0.17% increase in the dependent variable, in the same order of magnitude as in Table 1. Similarly, increasing by 10% the risk of aggregate terrorism is correlated with a 0.05% increase in the number of government's positions held by the military. Surprisingly, there is a negative and significant correlation between the probability of transnational terrorism and MIP whereas the number of transnational terrorism events and the terrorism dummy are not significant at conventional levels.¹

¹We refer the interested reader to White (2017) for detailed information on the variables associated to his own measure of Military Political Participation (MPG), including the robustness checks.

Table B3: Active military government share (MPG) and Terrorism

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
Population (ln)	-0.002	-0.005	-0.006	0.003	0.000	-0.001	-0.006
1 ()	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)
GDP per capita (ln)	0.050***	0.050***	0.050***	0.037***	0.052***	0.054***	0.048***
1 1 (/	(0.008)	(0.008)	(0.008)	(0.008)	(0.009)	(0.009)	(0.008)
Polity score	-0.005***	-0.005***	-0.005***	-0.005***	-0.005***	-0.005***	-0.005***
v	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Regime durability (ln)	0.002	0.003	0.003	0.002	0.002	0.003	0.002
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Leader tenure (ln)	-0.002	-0.002	-0.002	-0.003	-0.002	-0.002	-0.002
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Corruption (ln)	0.014	0.013	0.013	0.011	0.014	0.013	0.012
	(0.009)	(0.009)	(0.009)	(0.008)	(0.009)	(0.009)	(0.008)
Personal regime	-0.009	-0.008	-0.007	-0.009	-0.010	-0.007	-0.016**
	(0.008)	(0.008)	(0.008)	(0.007)	(0.008)	(0.008)	(0.008)
Military regime	0.123***	0.119***	0.119***	0.122^{***}	0.122^{***}	0.122***	0.122***
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)
Single-party regime	-0.036***	-0.036***	-0.037***	-0.033***	-0.036***	-0.034***	-0.035***
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
MPG in neighbor (ln)	-0.125***	-0.145***	-0.139***	-0.114***	-0.126***	-0.121***	-0.116***
	(0.037)	(0.037)	(0.037)	(0.033)	(0.037)	(0.037)	(0.034)
Coup attempt	0.010	0.009	0.009	0.008	0.009	0.009	0.006
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Coup attempt (last 5 years)	-0.014***	-0.013**	-0.013***	-0.011**	-0.013***	-0.014***	-0.015***
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
High-intensity civil war	0.007	-0.001	-0.001	0.010	0.004	-0.001	0.008
	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)	(0.008)	(0.007)
Low-intensity civil war	0.017***	0.012**	0.013**	0.017***	0.016***	0.013**	0.017***
7	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Interstate conflict	0.011	0.010	0.011	0.012*	0.010	0.009	0.013*
T (/ 1)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Terrorism dummy (t-1)	0.003						
T (1 + 1)	(0.003)	0.000***					
Terrorism (ln,t-1)		0.006***					
D : (1 + 1)		(0.001)	0.000***				
Domestic terrorism (ln, t-1)			0.006***				
Transportional temperions (le t 1)			(0.001)	0.000			
Transnational terrorism (ln, t-1)				-0.002			
Dr. Tomorismo (les. 4.1)				(0.003)	0.005*		
Pr Terrorism (ln, t-1)					0.005*		
Dr. Domontio Tomoniono (lo. 1.1)					(0.003)	0.017***	
Pr Domestic Terrorism (ln, t-1)						0.017***	
Pr Transnational Terrorism (ln, t-1)						(0.006)	-0.077*
11 11ansnauonai 1errorisin (in, t-1)							(0.040)
Observations	2197	2197	2197	2310	2185	2185	2261
ODSCI VALIDIIS	4191	4131	4131	2010	2100	2100	2201

^{*}p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses. Two-way fixed-effects OLS.

B4 Defense minister is a military officer

The second dependent variable is a dummy indicator, which takes value "1" if a state's defense minister is a military officer for the duration of his term ?with no indication of formal retirement when they assumed office? and "0" otherwise (from Cruz et al., 2016). This measure helps capture the degree of civilian control over the military and it is consistent with case-based research in the field (Pion-Berlin, 1992). As Pion-Berlin (1992, p.89) puts it: "Executives [..] prefer their authority to be centralized in a single, civiliandirected defense ministry, as opposed to separate, military-supervised army, air force, and navy ministries. Where civilians control a single defense ministry, military autonomy is at its lowest. Where a military-supervised defense ministry or separate branch ministries under civilian control exist, then military autonomy is higher, and it is higher still where cabinet-ranking military ministers run their own bureaucracies." Relatedly, Bruneau and Goetze (2006, p.78) claim that the Ministry of Defense is perhaps the "most indispensable institutional mechanism" for establishing civilian control of the military. This is because the Ministry of Defense is "the organizational link between the democratic government and the military that allows politicians to translate policy preferences into military commands. It is important that the ministry assumes key defense-related powers in defense and not relegates these to the military commanders. These include major responsibility for organizing defense forces and preparing defense objectives, plans, strategies, and even doctrines" (Pion-Berlin, 2009, p.567). Similarly, Kohn (1997, p.10) argues that "in nations new to democracy, where the military carries the burden of loyalty to previously autocratic governments, the public should insist that a civilian serve as defense minister." Put differently, having members of the government with a military background tends to be related to a higher military involvement in politics. As such, our variable indicating whether the defense minister is a military officer is a good measure of MIP.

As in previous models, we use a fixed-effects logit model that allows us to avoid biased estimates for our variables of interest that are likely to be related to time invariant unobserved factors. We also include a cubic polynomial of the number of years elapsed since the last time a defense minister was a military officer in the case of each country (t, t2, t3). The inclusion of the t, t2, and t3 ensures that we explicitly model any temporal dependence Carter and Signorino (2010). Table A4 shows the results. Despite the substantively different dependent variable, the new coefficients have the same signs as before and are significant except in column iv, where the number of transnational terrorism is indistinguishable from zero. Interestingly, both the probability of domestic terrorism as well as transnational terrorism are now positive and statistically significant, as predicted by Hypothesis 2. These results suggest that the causes of military involvement in politics may differ, and hence our conceptual and empirical distinction is relevant for understanding military involvement in politics in general.

Table B4: Defense minister is a military officer and Terrorism

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
Is Defense Minister a Military Officer?							
Population (ln)	17.353***	16.843***	16.746***	16.556***	17.423***	17.250***	15.745***
	(2.772)	(2.765)	(2.760)	(2.692)	(2.800)	(2.807)	(2.758)
GDP per capita (ln)	4.240***	4.083***	4.124***	4.245^{***}	4.296***	4.566***	4.076***
	(0.895)	(0.902)	(0.900)	(0.872)	(0.899)	(0.913)	(0.892)
Polity score	-0.264***	-0.268***	-0.272***	-0.263***	-0.268***	-0.308***	-0.269***
	(0.045)	(0.045)	(0.045)	(0.045)	(0.045)	(0.047)	(0.046)
Regime durability (ln)	-0.286*	-0.287^*	-0.315**	-0.309**	-0.251*	-0.289*	-0.291*
	(0.150)	(0.150)	(0.150)	(0.148)	(0.152)	(0.151)	(0.149)
Leader tenure (ln)	0.068	0.079	0.054	0.087	0.081	0.117	0.122
	(0.178)	(0.178)	(0.177)	(0.171)	(0.177)	(0.179)	(0.178)
Corruption (ln)	1.983**	1.855**	1.879**	2.248***	1.961**	1.806**	2.519***
	(0.823)	(0.833)	(0.834)	(0.810)	(0.835)	(0.845)	(0.842)
Personal regime	-2.556***	-2.538***	-2.491***	-1.695**	-2.484***	-2.336***	-2.092***
_	(0.763)	(0.761)	(0.766)	(0.724)	(0.757)	(0.750)	(0.725)
Military regime	-0.036	-0.413	-0.282	0.029	-0.110	0.068	-0.269
	(0.900)	(0.879)	(0.885)	(0.897)	(0.904)	(0.899)	(0.913)
Single-party regime	-2.233***	-2.322***	-2.232***	-2.446***	-2.123**	-2.154**	-2.018**
	(0.832)	(0.839)	(0.831)	(0.824)	(0.834)	(0.842)	(0.850)
Defence Min. in neighbor	2.785***	2.668***	2.671***	2.421***	2.630***	2.632***	2.734***
	(0.713)	(0.711)	(0.713)	(0.685)	(0.707)	(0.694)	(0.701)
Coup attempt	$0.397^{'}$	0.336	0.398	0.242	0.343	0.128	-0.085
1	(0.752)	(0.758)	(0.750)	(0.675)	(0.763)	(0.753)	(0.697)
Coup attempt (last 5 ys)	0.480	0.530	0.514	0.194	0.487	0.554	0.161
r (tar 1 J a)	(0.385)	(0.383)	(0.383)	(0.355)	(0.383)	(0.381)	(0.367)
Low-intensity civil war	0.219	0.084	0.138	0.591	0.218	-0.069	0.598
, , , , , , , , , , , , , , , , , , ,	(0.395)	(0.403)	(0.400)	(0.376)	(0.396)	(0.413)	(0.384)
High-intensity civil war	-0.037	-0.272	-0.200	0.029	-0.118	-0.706	0.216
8	(0.535)	(0.552)	(0.552)	(0.489)	(0.552)	(0.608)	(0.535)
Interstate conflict	1.244**	1.162*	1.233**	1.163**	1.262**	1.139*	1.209**
	(0.605)	(0.606)	(0.612)	(0.582)	(0.611)	(0.622)	(0.586)
t	-0.343	-0.334	-0.359	-0.283	-0.441	-0.398	-0.301
	(0.315)	(0.314)	(0.311)	(0.296)	(0.311)	(0.307)	(0.299)
t2	0.069	0.067	0.068	0.058	0.081*	0.073	0.060
02	(0.047)	(0.047)	(0.046)	(0.044)	(0.045)	(0.045)	(0.044)
t3	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Terrorism dummy (t-1)	0.546*	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
refronsin duminy (t 1)	(0.301)						
Terrorism (ln,t-1)	(0.301)	0.304***					
Terrorism (m,t-1)		(0.115)					
Domestic terrorism (ln, t-1)		(0.115)	0.263**				
Domestic terrorism (m, t-1)			(0.116)				
The manational temperious (le. t. 1)			(0.110)	0.060			
Transnational terrorism (ln, t-1)				-0.069			
D. T. (l. 4.1)				(0.305)	0.000***		
Pr Terrorism (ln, t-1)					0.669***		
D. D					(0.260)	1 (40***	
Pr Domestic Terrorism (ln, t-1)						1.642***	
D. W. (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						(0.517)	10.000**
Pr Transnational Terrorism (ln, t-1)							13.023**
Observations	0.00	000	0.00	1000	050	050	(5.306)
Observations	969	969	969	1022	950	950	981

^{*}p < 0.10, **p < 0.05, **p < 0.01. Standard errors in parentheses.

Fixed-Effects Logit Models with cubic time polynomial.

B5 Ordered probit

The ICRG military in politics measure could be also treated as a categorical and ordered variable. As a robustness check, we therefore round it to the nearest integer and estimate ordered probit models with random effects instead of the linear model employed in Table 2. As we can see from Table A5, using a probit model yields empirical estimates that are almost identical to those reported in Table 2.

Table B5: Military Involvement in Politics (ICRG) and Terrorism: Ordered Probit

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
Population (ln)	0.113	0.083	0.080	0.119	0.085	0.086	0.085
	(0.119)	(0.120)	(0.119)	(0.110)	(0.120)	(0.141)	(0.112)
GDP per capita (ln)	-0.709***	-0.743***	-0.723***	-0.689***	-0.712***	-0.694***	-0.675***
	(0.157)	(0.158)	(0.160)	(0.149)	(0.159)	(0.162)	(0.154)
Polity score	-0.099***	-0.101***	-0.103***	-0.098***	-0.101***	-0.100***	-0.101***
	(0.028)	(0.028)	(0.028)	(0.027)	(0.029)	(0.028)	(0.027)
Regime durability (ln)	-0.250***	-0.254***	-0.266***	-0.274***	-0.235***	-0.251***	-0.252***
	(0.088)	(0.088)	(0.088)	(0.086)	(0.089)	(0.092)	(0.086)
Leader tenure (ln)	-0.116	-0.115	-0.119	-0.148	-0.112	-0.111	-0.115
	(0.093)	(0.094)	(0.095)	(0.092)	(0.093)	(0.093)	(0.091)
Corruption (ln)	1.804***	1.741***	1.753***	2.038***	1.821***	1.848***	2.086***
D l :	(0.398)	(0.400)	(0.403)	(0.408)	(0.401)	(0.409)	(0.409)
Personal regime	0.265	0.302	0.302	0.256	0.338	0.331	0.116
Military namina	(0.441) $0.971**$	(0.442) $0.871**$	(0.444) $0.850**$	(0.414)	(0.447) 0.980**	(0.449) 0.969**	(0.424)
Military regime	(0.438)		(0.414)	0.958* (0.490)	(0.443)	(0.480)	0.964* (0.498)
Single-party regime	-1.619***	(0.392) -1.631***	-1.646***	-1.620***	(0.445) -1.555***	-1.601***	(0.496) -1.541***
Single-party regime	(0.433)	(0.424)	(0.458)	(0.445)	(0.439)	(0.460)	(0.462)
MilPol in neighborhood	1.208*	1.113^*	1.165^*	1.327**	1.219^*	1.269**	1.511**
Will of in heighborhood	(0.630)	(0.635)	(0.637)	(0.616)	(0.634)	(0.640)	(0.627)
Coup attempt	0.521**	0.511**	0.533**	0.547***	0.538**	0.538**	0.447**
coup accompt	(0.210)	(0.213)	(0.211)	(0.205)	(0.218)	(0.211)	(0.197)
Coup attempt (last 5 years)	0.112	0.136	0.122	0.113	0.128	0.103	0.058
r (the just)	(0.185)	(0.185)	(0.184)	(0.180)	(0.185)	(0.192)	(0.192)
Low-intensity civil war	0.416**	0.299*	0.326^{*}	0.461***	0.413**	0.436***	0.455***
·	(0.181)	(0.174)	(0.172)	(0.172)	(0.176)	(0.164)	(0.176)
High-intensity civil war	0.608**	$0.392^{'}$	0.412	0.707**	0.584^{*}	0.617**	0.670**
	(0.306)	(0.286)	(0.283)	(0.298)	(0.306)	(0.291)	(0.302)
Interstate conflict	0.344	0.299	0.326	0.337	0.338	0.351	0.339
	(0.317)	(0.312)	(0.307)	(0.290)	(0.313)	(0.318)	(0.288)
Terrorism dummy (t-1)	0.335***						
	(0.110)						
Terrorism (ln,t-1)		0.185***					
		(0.047)					
Domestic terrorism (ln, t-1)			0.181^{***}				
			(0.045)				
Transnational terrorism (ln, t-1)				0.108			
				(0.086)			
Pr Terrorism (ln, t-1)					0.298***		
					(0.100)		
Pr Domestic Terrorism (ln, t-1)						0.195	
						(0.276)	0.400
Pr Transnational Terrorism (ln, t-1)							3.430
01	00.47	00.47	00.47	0001	0005	0005	(2.232)
Observations	2247	2247	2247	2361	2235	2235	2312

^{*}p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses are clustered at country level.

B6 Probit models with random-effects

Our alternative dependent variable, whether the defense minister is a military officer, is dichotomous and we have used logit models with fixed-effects. Yet, classical fixed-effect models exclude potentially informative observations where we do not observe variation in the dependent variable over time (about 51% of the total number of observations). As a robustness check, we also employ probit models with random-effects. The random-effects model yields consistent and efficient estimates under the assumption of exogeneity of the covariates with respect to the country intercept, although many covariates could be correlated with the country intercept. To relax this assumption and allow for the endogeneity of the covariates regarding the time-invariant country intercept, we estimate random effect models which include the country (cluster) mean of the covariates (a la Mundlak, 1978). This model has many desirable features, as it obtains consistent estimates that are not influenced by the specification of the country intercept. It also controls for all unobservable differences between countries, dealing with all country-specific characteristics that may affect the chances of having a military defense minister and the security environment at the same time. Yet, as opposed to the fixed-effect estimates, it does not require us to exclude as non-informative all countries where we do not observe variation in the dependent variable (see Gupte et al., 2014, for a recent application and full discussion). Table A6 presents this new set of estimates, and we can see that our results are not driven by the choice of the model, and the previous findings carry over.

Table B6: Defense Minister and Terrorism: Probit

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
Is Defense Minister a Military Officer?		. ,	. /		. /	. ,	
Population (ln)	13.719***	13.310***	13.207***	11.731***	13.868***	13.725***	12.048***
CDD : (1)	(2.561)	(2.553)	(2.539)	(2.439)	(2.606)	(2.630)	(2.535)
GDP per capita (ln)	3.519***	3.336***	3.373***	3.209***	3.636***	3.883***	3.189***
D. III	(0.843)	(0.844)	(0.842)	(0.807)	(0.851)	(0.861)	(0.840)
Polity score	-0.294***	-0.297***	-0.301***	-0.298***	-0.295***	-0.332***	-0.304***
Domina dunahilitu (la)	(0.045) -0.350**	(0.044) -0.345**	(0.045) -0.374**	(0.044) -0.396***	(0.045) -0.310**	(0.047) -0.345**	(0.045) -0.364**
Regime durability (ln)	(0.146)	(0.146)	(0.145)	(0.143)	(0.148)	(0.147)	(0.145)
Leader tenure (ln)	0.094	0.140) 0.117	0.093	0.140	0.148) 0.107	0.147	0.149
Leader tenure (m)	(0.176)	(0.177)	(0.176)	(0.140)	(0.176)	(0.178)	(0.177)
Corruption (ln)	1.700**	1.560*	1.581*	1.885**	1.646**	1.519*	2.114**
Corruption (III)	(0.813)	(0.823)	(0.821)	(0.788)	(0.823)	(0.830)	(0.823)
Personal regime	-2.126***	-2.122***	-2.076***	-1.290*	-2.062***	-1.902***	-1.753**
	(0.722)	(0.719)	(0.722)	(0.693)	(0.720)	(0.714)	(0.701)
Military regime	-0.139	-0.515	-0.404	-0.131	-0.165	-0.026	-0.330
	(0.901)	(0.877)	(0.883)	(0.897)	(0.898)	(0.895)	(0.914)
Single-party regime	-2.044***	-2.128***	-2.042***	-1.957***	-1.977***	-1.935**	-1.629**
	(0.749)	(0.756)	(0.751)	(0.733)	(0.756)	(0.767)	(0.760)
Defence Min. in neighbor	2.655****	2.572***	2.572***	2.478***	2.535***	2.563***	2.821***
	(0.680)	(0.678)	(0.679)	(0.654)	(0.676)	(0.667)	(0.675)
Coup attempt	0.231	0.154	0.217	0.061	0.192	-0.007	-0.233
	(0.738)	(0.739)	(0.734)	(0.677)	(0.749)	(0.744)	(0.702)
Coup attempt (last 5 ys)	0.459	0.513	0.495	0.158	0.474	0.539	0.153
	(0.382)	(0.380)	(0.380)	(0.355)	(0.381)	(0.381)	(0.369)
Low-intensity civil war	0.165	-0.015	0.041	0.445	0.136	-0.167	0.471
TT: 1 : 4 : 24 : 21	(0.391)	(0.400)	(0.398)	(0.373)	(0.394)	(0.413)	(0.384)
High-intensity civil war	-0.160	-0.442	-0.374	-0.166	-0.227	-0.818	0.031
Interstate conflict	(0.528) 1.170*	(0.545) $1.069*$	(0.545) 1.134^*	(0.487) 1.057^*	(0.545) 1.190*	(0.602) 1.041^*	(0.531) $1.094*$
Interstate connect	(0.605)	(0.603)	(0.608)	(0.583)	(0.613)	(0.624)	(0.588)
t	-0.363	-0.353	-0.369	-0.248	-0.424	-0.390	-0.265
U	(0.276)	(0.276)	(0.276)	(0.258)	(0.279)	(0.275)	(0.263)
t2	0.060*	0.059	0.060	0.043	0.067*	0.061*	0.047
-	(0.036)	(0.036)	(0.036)	(0.034)	(0.037)	(0.037)	(0.034)
t3	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Terrorism dummy (t-1)	$0.462^{'}$,	,	,	,	,	,
	(0.289)						
Terrorism (ln,t-1)		0.320***					
		(0.110)					
Domestic terrorism (ln, t-1)			0.282**				
			(0.113)				
Transnational terrorism (ln, t-1)				-0.144			
				(0.300)			
Pr Terrorism (ln, t-1)					0.615**		
					(0.253)		
Pr Domestic Terrorism (ln, t-1)						1.612***	
						(0.511)	0.75.4**
Pr Transnational Terrorism (ln, t-1)							9.754**
Constant	0 969	<i>E</i> 020	7.049	11 701	0 = 64	<i>e</i> 000	(4.002)
Constant	-8.363 (14.212)	-6.939 (14.025)	-7.043 (14.138)	-11.721 (13.563)	-8.564 (14.430)	-6.020 (14.644)	-9.989 (14.873)
Observations	(14.212)	(14.025)	(14.138)	(13.563)	(14.439)	(14.644)	(14.873)
Observations	2069	2069	2069	2182	2058	2058	2133

*p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses. Country means of all time-variant covariates and year dummies are included but not reported

B7 Rare event

Third, we assess the robustness of our results to the rarity of ones in the dependent variable. For addressing any potential concerns in light of this rare-events problem, we re-estimated our core models with the rare-events logistic regression estimator by King and Zeng (2001). Table A7 in this appendix summarizes our results when using this estimator that directly corrects for the potential bias due to a rare-events data-generating process. As shown in this table, though, our results mirror the findings we discuss in the main text, although transnational terrorism fails to achieve statistical significance at conventional levels. The terrorism dummy is not statistical significant, although the coefficient comes close to significance at the 10% level.

Table B7: Defense Minister and Terrorism: Rare Event Logit

	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
Population (ln)	0.243***	0.229***	0.228***	0.261***	0.212***	0.108*	0.264***
r opulation (iii)	(0.044)	(0.045)	(0.045)	(0.043)	(0.046)	(0.061)	(0.043)
GDP per capita (ln)	-0.219***	-0.221***	-0.221***	-0.186***	-0.239***	-0.273***	-0.192***
GDT per capita (iii)	(0.050)	(0.050)	(0.050)	(0.049)	(0.052)	(0.054)	(0.049)
Polity score	-0.093***	-0.098***	-0.097***	-0.093***	-0.097***	-0.103***	-0.097***
Tolley Score	(0.013)	(0.013)	(0.013)	(0.012)	(0.013)	(0.014)	(0.012)
Regime durability (ln)	-0.212***	-0.213***	-0.220***	-0.194***	-0.196***	-0.185***	-0.200***
regime darability (iii)	(0.055)	(0.056)	(0.055)	(0.054)	(0.056)	(0.057)	(0.056)
Leader tenure (ln)	0.041	0.041	0.036	-0.016	0.053	0.062	-0.028
	(0.085)	(0.085)	(0.084)	(0.079)	(0.086)	(0.085)	(0.083)
Corruption (ln)	0.620**	0.675***	0.613**	0.607**	0.595**	0.581**	0.527**
corruption (in)	(0.259)	(0.261)	(0.258)	(0.255)	(0.262)	(0.261)	(0.259)
Personal regime	-0.175	-0.136	-0.149	-0.084	-0.200	-0.142	-0.015
r ergeriar regime	(0.184)	(0.185)	(0.184)	(0.176)	(0.188)	(0.192)	(0.178)
Military regime	0.346	0.318	0.319	0.339	0.342	0.335	0.363
	(0.340)	(0.348)	(0.346)	(0.337)	(0.342)	(0.347)	(0.337)
Single-party regime	-0.843***	-0.780***	-0.799***	-0.648***	-0.836***	-0.796***	-0.495***
3 1 <i>V</i> 3 ·	(0.200)	(0.200)	(0.199)	(0.186)	(0.202)	(0.202)	(0.185)
Defence Min. in neighbor	1.895***	1.826***	1.828***	1.984***	1.924***	1.981***	1.994***
Ü	(0.258)	(0.259)	(0.261)	(0.253)	(0.260)	(0.263)	(0.262)
Coup attempt	-0.637*	-0.635*	-0.639*	-0.577*	-0.548	-0.564	-0.627*
	(0.349)	(0.351)	(0.351)	(0.346)	(0.348)	(0.350)	(0.362)
Coup attempt (last 5 ys)	0.836***	0.842***	0.854***	0.647***	0.860***	0.885***	0.770***
1 (0)	(0.188)	(0.190)	(0.189)	(0.188)	(0.188)	(0.189)	(0.194)
Low-intensity civil war	0.081	-0.084	-0.019	0.262^{*}	$0.032^{'}$	-0.110	0.198
·	(0.157)	(0.160)	(0.159)	(0.153)	(0.159)	(0.172)	(0.153)
High-intensity civil war	0.620***	0.382*	0.426*	0.633***	0.550**	0.282	0.667***
	(0.221)	(0.231)	(0.234)	(0.213)	(0.229)	(0.261)	(0.213)
Interstate conflict	-0.612**	-0.744**	-0.725**	-0.368	-0.639**	-0.678**	-0.509*
	(0.300)	(0.315)	(0.311)	(0.286)	(0.296)	(0.294)	(0.290)
\mathbf{t}	-0.258**	-0.250**	-0.268**	-0.200*	-0.249**	-0.263**	-0.171
	(0.120)	(0.119)	(0.120)	(0.114)	(0.121)	(0.122)	(0.113)
t2	0.030^{**}	0.030**	0.030**	0.025^{**}	0.029**	0.031**	0.021^*
	(0.012)	(0.012)	(0.012)	(0.012)	(0.012)	(0.012)	(0.012)
t3	-0.001**	-0.001**	-0.001**	-0.001**	-0.001**	-0.001**	-0.001*
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Terrorism dummy (t-1)	0.239*						
	(0.127)						
Terrorism (ln,t-1)		0.145***					
		(0.040)					
Domestic terrorism (ln, t-1)			0.122^{***}				
			(0.043)				
Transnational terrorism (ln, t-1)				-0.400***			
				(0.140)			
Pr Terrorism (ln, t-1)					0.259**		
					(0.105)		
Pr Domestic Terrorism (ln, t-1)						0.588***	
						(0.190)	
Pr Transnational Terrorism (ln, t-1)							-1.030
							(1.137)
Constant	-4.143***	-4.000***	-3.782***	-4.514***	-4.365***	-3.536***	-4.292***
	(0.982)	(0.990)	(0.994)	(0.936)	(1.011)	(1.015)	(0.958)
Observations	2093	2093	2093	2206	2080	2080	2156

^{*}p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses.

B8 The role of political regimes: a conditional effect

It may well be the case that terrorism influences the civilian control of the military and increases the degree of military involvement in policymaking conditional on a country's level of democracy. In fact, democratic regimes, given the system of checks and balances, could be less permeable to the pressure of military actors in presence of terrorist violence. We thus first replicate baseline models in Table 2 and add an interaction between actual terrorism and a simple dummy variable taking value "1" if a country has a Polity score < 7 and "0" otherwise, following traditional studies on democratization and the conventional strategy within the democratic peace theory (e.g., Gleditsch and Ward, 2006). Results are shown in Table A8, models (i)-(iv). Second, we we also add an interaction between the terrorism dummy and the full scale of the Polity score (see model (v) in Table A8). Whereas the democracy dummy or the Polity score are consistently negative and significant, as one would expect, there is no support for the claim that regime type conditions the effect we argued for in the first hypothesis. In fact, the level of terrorism, per se, remains negative but its interaction with regime time is consistently insignificant at conventional levels. As such, the impact of terrorism on military involvement does not seem to vary across different democracy levels.

Table B8: Military Involvement in Politics (ICRG) and Terrorism: A Conditional Effect

(i)	(ii)	(iii)	(iv)	(v)
0.149	0.137	0.134	0.106	0.175
(0.156)	(0.157)	(0.157)	(0.156)	(0.163)
-0.046	-0.055	-0.052	-0.058	-0.046
(0.055)	(0.055)	(0.056)	(0.052)	(0.059)
-0.016	-0.015	-0.017	-0.018*	-0.032**
(0.010)	(0.010)	(0.010)	(0.010)	(0.013)
-0.011	-0.011	-0.011	-0.014	-0.011
(0.013)	(0.013)	(0.013)	(0.013)	(0.013)
0.194***	0.190***	0.192***	0.235***	0.189***
(0.054)	(0.054)	(0.055)	(0.057)	(0.057)
0.057	0.065	0.067	0.067	0.036
(0.061)	(0.062)	(0.063)	(0.057)	(0.065)
0.163***	0.151***	0.149***	0.161***	0.138***
(0.045)	(0.044)	(0.049)	(0.049)	(0.051)
-0.266***	-0.266***	-0.267***	-0.268***	-0.270***
				(0.083)
0.069	0.062	0.068	0.082	0.095
				(0.101)
,				0.068**
				(0.032)
` ,	` /	,	` /	0.031
				(0.029)
, ,	, ,	,		0.047*
				(0.026)
				0.071*
				(0.041)
				0.046
				(0.038)
	(0.000)	(0.000)	(0.000)	0.044***
				(0.016)
	-0 135***	-0 120***	-0.136***	(0.010)
	(0.040)	(0.040)	(0.045)	
(0.020)	0.001**			
	,			
	(0.010)	0.001**		
		(0.012)	0.000	
			(0.026)	
				-0.011**
				(0.004)
				-0.001
				(0.002)
	0.149 (0.156) -0.046 (0.055) -0.016 (0.010) -0.011 (0.013) 0.194*** (0.054) 0.057 (0.061) 0.163*** (0.045) -0.266*** (0.085)	0.149 0.137 (0.156) (0.157) -0.046 -0.055 (0.055) (0.055) -0.016 -0.015 (0.010) (0.010) -0.011 -0.011 (0.013) (0.013) 0.194*** 0.190*** (0.054) (0.054) 0.057 0.065 (0.061) (0.062) 0.163*** 0.151*** (0.045) (0.044) -0.266*** -0.266*** (0.085) (0.084) 0.069 0.062 (0.095) (0.095) 0.070** 0.068** (0.030) (0.030) 0.025 0.027 (0.030) (0.030) 0.041 0.031 (0.026) (0.025) 0.065* 0.044 (0.039) (0.035) 0.047 0.043 (0.043) (0.048) -0.013 (0.048)	0.149 0.137 0.134 (0.156) (0.157) (0.157) -0.046 -0.055 -0.052 (0.055) (0.056) -0.017 (0.016) -0.015 -0.017 (0.010) (0.010) (0.010) -0.011 -0.011 -0.011 (0.013) (0.013) (0.013) 0.194*** 0.192*** (0.054) (0.054) (0.054) (0.055) 0.057 0.065 0.067 (0.061) (0.062) (0.063) 0.163*** 0.151*** 0.149*** (0.045) (0.044) (0.049) -0.266*** -0.267*** (0.085) (0.085) (0.084) (0.089) 0.069 0.062 0.068 (0.095) (0.095) (0.095) 0.070** 0.068** 0.070** (0.030) (0.030) (0.030) 0.025 0.027 0.025 (0.030) (0.035) (0.025)	0.149 0.137 0.134 0.106 (0.156) (0.157) (0.157) (0.156) -0.046 -0.055 -0.052 -0.058 (0.055) (0.056) (0.052) -0.016 -0.015 -0.017 -0.018* (0.010) (0.010) (0.010) (0.010) -0.011 -0.011 -0.014 (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.054) (0.054) (0.055) (0.057) 0.057 0.065 0.067 0.067 (0.061) (0.062) (0.063) (0.057) 0.163*** 0.151*** 0.149*** 0.161*** (0.045) (0.044) (0.049) (0.049) -0.266**** -0.266**** -0.267**** -0.268*** (0.085) (0.084) (0.089) (0.089) 0.069 0.062 0.068 0.082 (0.095) (0.095) (0.095) (0.095) 0.070**

^{*}p < 0.10, **p < 0.05, ***p < 0.01. Standard errors in parentheses are clustered at country level. Two-way fixed-effects OLS.

C Illustrative case studies

We conducted two in-depth case studies in order to illustrate and shed light on the causal mechanisms at play. We selected the cases of France (1995-98 and 2015-16) and Algeria (1989-92). As a first step, the primary logic for selecting those cases was to identify instances in which we could observe how the mechanisms unfold and to clarify them. Therefore, we selected them from the dataset among all those countries that displayed a co-variation between the variables of interest and the outcome. From a theoretical point of view, we chose Algeria and France because we are interested in illustrating that our main argument holds in both democratic (France) and non-democratic (Algeria) states. In this regard, we followed a similar logic to that of the 'pathway' case, introduced by Gerring:

"Here, the broader cross-case relationship is known, either on the basis of explicit cross-case investigation or on the basis of strong deductive hunches. That is, we have reason to presume that a causal factor of interest (denoted X1) is strongly associated with an outcome (Y), holding other factors (X2) constant. In this context, the identification of a crucial case serves not to confirm or disconfirm a causal hypothesis (because that hypothesis is already well established) but rather to clarify a hypothesis. More specifically, the case study serves to elucidate causal mechanisms" (Gerring, 2007, p.238).

Therefore, our case selection strategy differs from the classical crucial case logic, which serves as theory confirming or disconfirming logic (Eckstein, 1975; Levy, 2008; cfr. Flyvbjerg, 2006, p. 232). In a second step, we added France (2015-16), which is out-of-sample since our dataset ends in 2004. We chose this case for three, mainly pragmatic, reasons (Seawright and Gerring, 2008, p.295). We observed a striking co-variation in the independent and dependent variable of interest but also that the 'pushing' mechanism did not seem to be at play, since the military was very skeptical of their increased role. In our research process for the present study, therefore, we delved into this case to find support and better refine the 'pulling' mechanism. Second, the variation from the 'baseline level of involvement in politics' was easier to identify, since we have already developed the necessary background knowledge for conducting this in-depth case. Third, this instance was more recent so it was easier to study both via news and report as well as through interviews with key experts involved in the process.

We systematically collected primary and secondary sources, such as newspaper articles and military magazines connecting terrorist threats or terrorist attacks with an increased level of military involvement in politics in France (1995-98 and 2015-16) and Algeria (1989-92). One of the authors of this manuscript is a specialist on French politics and is fluent in French, allowing us to complement the primary and secondary sources written material with five semi-structured individual qualitative interviews with experts in the cases under study and military personnel of both the French and the Algeria militaries (see list below). Sources have been used as evidence only when triangulated with other sources and confirmed by our interviewees. The sources have been coded and analyzed through standard text analysis. We provide further detail on the interview in the following table.

Table C1: List of interviewees

Interviewees	Date	Location	Background
Expert 1	Jan-17	Paris	Retired army general
Expert 1 Expert 2	Mar-17	Paris (via phone)	On-duty French army colonel
Expert 2 Expert 4	Feb-17	Paris (via phone)	Retired Algerian army colonel
Expert 5	Apr-17	Algiers (via phone)	Academic, Algeria expert
Expert 6	Apr-17	Beirut (via phone)	Academic, Algeria
Expert 7	Sep-17	Paris	Academic, France expert
Expert 8	Oct-17	Paris (via phone)	French Army colonel
Expert 9	May-18	Paris (via phone)	Retired French general

Table C2: France: pushing (1995-98)

Country	Year	N. of Terrorist attacks (X)	ICRG (Y)
France	1994	14	1.1
France	1995	39	1.1
France	1996	19	1.2
France	1997	44	1.9
France	1998	44	2.2
France	1999	42	2.2
France	2000	19	2.2
France	2001	17	2.2
France	2002	13	2.2
France	2003	32	2.2
France	2004	8	2.2

Table C3: Algeria: pushing (1989-92)

Country	Year	N. of Terrorist attacks (X)	ICRG (Y)
Algeria	1988	0	4.2
Algeria	1989	0	4.2
Algeria	1990	3	4.2
Algeria	1991	31	5.3
Algeria	1992	215	6.2
Algeria	1993	107	6.2

References

Brooks, R. A. (2019). Integrating the civil-military relations subfield. *Annual Review of Political Science*, 22.

- Bruneau, T. C. and Goetze, R. B. (2006). *Ministries of Defense and Democratic Control*, pages 71–98. University of Texas Press.
- Carter, D. B. and Signorino, C. S. (2010). Back to the future: Modeling time dependence in binary data. *Political Analysis*, 18(3):271–292.
- Cruz, C., Keefer, P., and Scartascini, C. (2016). Database of political institutions codebook, 2015 update (dpi2015). *Inter-American Development Bank*.
- Eckstein, H. (1975). Case studies and theory in political science. In Greenstein, F. and Polsby, N., editors, *Handbook of Political Science. Vol. 7 of Political Science: Scope and Theory.*, pages 79–138. Reading, MA: Addison-Wesley.
- Finer, S. (2017). The man on horseback: The role of the military in politics. Routledge.
- Flyvbjerg, B. (2006). Five misunderstandings about case-study research. *Qualitative* inquiry, 12(2):219–245.
- Gerring, J. (2007). Is there a (viable) crucial-case method? Comparative Political Studies, 40(3):231–253.
- Gleditsch, K. S. and Ward, M. D. (2006). Diffusion and the international context of democratization. *International organization*, 60(4):911–933.
- Gupte, J., Justino, P., and Tranchant, J.-P. (2014). Households amid urban riots: The economic consequences of civil violence in india. *Journal of Conflict Resolution*, 58(8):1445–1473.
- Hundman, E. and Parkinson, S. E. (2019). Rogues, degenerates, and heroes: Disobedience as politics in military organizations. *European Journal of International Relations*, page 1354066118823891.
- Huntington, S. P. (1957). The soldier and the state. Harvard University Press.
- King, G. and Zeng, L. (2001). Logistic regression in rare events data. *Political analysis*, 9(2):137–163.
- Kohn, R. H. (1997). How democracies control the military. *Journal of Democracy*, 8(4):140–153.
- Levy, J. S. (2008). Case studies: Types, designs, and logics of inference. Conflict management and peace science, 25(1):1–18.
- Mundlak, Y. (1978). On the pooling of time series and cross section data. *Econometrica*, 46(1):69–85.

Nordlinger, E. A. (1977). Soldiers in politics: military coups and governments. Prentice Hall.

- Pion-Berlin, D. (1992). Military autonomy and emerging democracies in south america. *Comparative Politics*, pages 83–102.
- Pion-Berlin, D. (2009). Defense organization and civil?military relations in latin america. *Armed Forces & Society*, 35(3):562–586.
- Ruffa, C., Dandeker, C., and Vennesson, P. (2013). Soldiers drawn into politics? the influence of tactics in civil–military relations. *Small Wars & Insurgencies*, 24(2):322–334.
- Seawright, J. and Gerring, J. (2008). Case selection techniques in case study research: A menu of qualitative and quantitative options. *Political research quarterly*, 61(2):294–308.
- Stepan, A. C. (2015). The military in politics: changing patterns in Brazil. Princeton University Press.
- White, P. B. (2017). Crises and crisis generations: The long-term impact of international crises on military political participation. *Security Studies*, 26(4):575–605.