Appendix A. The system simulation data

These have been used as data of the AVVMS in the simulations of the dynamic control laws:

$$L = 1.2 \text{ m}$$
 vehicle length
 $m = 299.4 \text{ kg}$ vehicle weight
 $W = 2937 \text{ N}$
 $B = 2937 \text{ N}$
 $I_x = 12.5 \text{ Nms}^2$
 $I_y = 42.25 \text{ Nms}^2$
 $I_z = 42.25 \text{ Nms}^2$
 $I_{xy} = I_{xz} = I_{yz} = 0 \text{ Nms}^2$

Where

$$I_{ob} = \begin{bmatrix} I_x & I_{xy} & I_{xz} \\ I_{xy} & I_y & I_{yz} \\ I_{xz} & I_{yz} & I_z \end{bmatrix}$$

The hydrodynamic derivatives of the vehicle are given by:

$$X. \ u = -294$$
 $X_u = -700$ $X_{u/u/} = -250$
 $Y. \ v = -490.5$ $Y_v = -500$ $Y_{v/v/} = -400$
 $Z. \ w = -392.4$ $Z_w = -500$ $Z_{w/w/} = -400$
 $K. \ p = -98.1$ $K_p = -250$ $K_{p/p/} = -350$
 $M. \ q = -117.7$ $M_q = -200$ $M_{p/p/} = -300$
 $N. \ r = -9.8$ $N_r = -200$ $N_{r/r/} = -300$

All the links are modeled as cylinders. Their volumes are computed as $\delta_i = \pi * L_i r_i^2$, where L_i and r_i are the link lengths and radius, respectively. For each of the cylinder the mass is computed as:

$$M_i = \begin{bmatrix} m_i + 0.1\delta_i & 0 & 0 & 0 & 0 & 0 \\ 0 & m_i + \rho \delta_i & 0 & 0 & 0 & 0 \\ 0 & 0 & m_i + \rho \delta_i & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{x,i} + \pi \rho L_i^3 r_i^2 / 12 & 0 & 0 \\ 0 & 0 & 0 & 0 & I_{y,i} + \pi \rho L_i^3 r_i^2 / 12 & 0 \\ 0 & 0 & 0 & 0 & 0 & I_{z,i} \end{bmatrix}$$