Supporting Information for

Study on Crystallization Structure and Thermal Behavior of iPP Induced by a New Liquid Crystal Nucleator

Xiaoxu Xu^{*1}, Zhengzheng Hao², Chao Fan², Qifan Chen¹, Yanhua Lu^{1,3}, Yaoqing Wu¹

¹School of Chemical Engineering, Eastern Liaoning University, Dandong, 118001, P. R. China

²Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819,

P. R. China;

³Key Laboratory of Functional Textile Materials, Liaoning Province, Dandong, 118001, P. R. China

Additional Data

Dispersibility of the polymer LCPs-P in the iPP

Liquid crystal to isotropic phase transition temperature of the polymer LCPs-P was 320.7°C, and the melting temperature of the α -crystal disappeared completely at 170°C, so we chose the blend temperature of 185 °C to investigate the dispersion effect of the LCPs-P in the iPP.

POM result showed that the clear liquid crystal properties or texture of the iPP blend sample with the LCPs-P content below 1.0% could not observed at 185 °C. When the content of the LCPs-P was more than 1.5%, the liquid crystal properties could be observed at 185 °C. Figure S1 shows the iPP blend sample with 2.0% LCPs-P content. When heated to 185 °C, the iPP melted completely, but liquid crystal texture still existed, so the distribution of liquid crystal showed that the LCPs-P was more evenly dispersed in the iPP.

Figure S1. The iPP blend sample with 2.0% LCPs-P content