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Appendix B: Software 

 

This appendix contains description of software packages 
implementing methods described in article Recent Advances in 
Machine Learning for Behavioral Sciences. The appendix has the 
same structure including section and subsection headings as 
the original article. The appendix focuses on R packages, but 
includes also other types of software, such as Python libraries 
and web-based systems. Names of R packages are typeset in a 

monospace font. 

2 Tabular Data 

2.1 Induction of Decision Trees 

The R ecosystem has support for various decision tree 
induction algorithms scattered across multiple packages. The 
caret package provides a uniform interface to many 

classification and regression functions in R, including CHAID 

(package CHAID), CART (package rpart), random forests 

(package party), and also to the C5.0 family of algorithms, 

which includes C5.0 decision trees and C5.0 boosted trees 

ensemble (package C50). BigML is an easy-to-use (yet 

commercial) Machine Learning as a Service system with good 
support for visualizing decision trees (cf. Figure 5). 
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Figure 5: Decision tree induced from data included in Figure 1 by 
BigMLcom. 

 

2.2 Induction of Predictive Rule Sets 

A freely accessible re-implementation of RIPPER can be found 
in the Weka machine learning library under the name of JRip. It 

is also made available to R users via the caret package. The 

caret package also provides several versions of various fuzzy 

rule induction algorithms, including SLAVE. Implementations of 

the CBA algorithm are available via the arc, arulesCBA and 

rCBA packages. Web-based graphical interface to CBA is 

provided by EasyMiner (Vojíř et al., 2018), see also Figure 6. 
Additional rule learning algorithms can be used from R via 
package RWeka from desktop-oriented systems, such as 
Orange, RapidMiner, and Weka. 

 

Figure 6: Predictive rule list induced from data included in Figure 1 
with EasyMiner.eu. The “with pruning” option activated 
postprocessing of the discovered association rules into a predictive 
model by the CBA algorithm. 

2.3 Discovering interesting patterns 

The arules package is in the center of R ecosystem for 

association rule mining. Supplementary packages include 
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arulesViz for visualisation, arulesExplain for generating 

human readable explanations, and several packages with rule 

pruning capabilities (arc, arulesCBA and rCBA). 

Especially for descriptive pattern mining, interactive 
graphical systems may provide an advantage over command 
line access offered by R. Interactive systems include EasyMiner 
(Vojíř et al., 2018), see also Figure 6, and LISp-Miner (Simunek, 
2003), a desktop-based implementation of the GUHA method. 
Software for subgroup discovery includes R package 

rsubgroup and graphical system Vikamine (Atzmueller and 

Lemmerich, 2012). 

2.4 Neural networks and deep learning 

R package tensorFlow provides interface to the TensorFlow 

project (Abadi et al., 2016), a popular open source machine 

learning framework used for deep learning. Package keras 

provides interface to the comprehensive Keras project (Chollet 
et al., 2018), which can work with several machine learning 
systems (TensorFlow, CNTK (Seide and Agarwal, 2016), and 
Theano (Bergstra et al., 2011) focused on neural networks and 
deep learning. 

3 Behavioral Data 

3.1 Web Log and Mobile Usage Mining 

Keyes, Rudis, and Jacobs (2016) present several R packages that 
can help with handling web server logs. For tracking users with 

Javascript-based systems, R package googleAnalyticsR can 

be used to retrieve data from the Google Analytics platform. For 
researchers that do not want to rely on Google Analytics, for 
example for privacy reasons (Chandler and Wallace, 2016), 
there are several open source systems with versatile tracking 
capabilities. These include Matomo (https://matomo.org/), 
which can perform both web and mobile app tracking, and 
Inbeat (https://www.inbeat.eu), which is a generic system 
focusing on collecting streaming user interaction data from 
sensor-based devices such as Microsoft Kinect. 

Semantic description of data being interacted with can be 
obtained with web crawlers and scrapers, such as R package 

https://matomo.org/
https://www.inbeat.eu/
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Rcrawler (Khalil and Fakir, 2017). The rgeolocate R 

package serves for mapping IP addresses to regions. 

There is an R package arulesSequences (Buchta, 

Hahsler, and Daniel Diaz, 2018) for extracting sequential 
association rules from data in the sequential format. Multiple R 
packages for analyzing time series data could also be applicable. 

3.2 Preference learning 

In some cases, preferences can be processed with algorithms 
for ordinal classification available in the caret R package. 

Specialized packages for preference models include 

PlackettLuce (Plackett-Luce model) and BradleyTerry2 

for Bradley-Terry models. Another implementation of Plackett-

Luce is available in the PLMIX package (Mollica and Tardella, 

2016). 

 

4 Textual data 

4.1 Word vectors and word embeddings 

We have not found an ESA algorithm R package in CRAN. 
However, an easy-to-use ESA implementation that can be 
operated from the command line is available at 
https://github.com/ticcky. 

For LSA, CRAN contains the package lsa, and a 

complementary package LSAfun. For LDA, topicmodels is a 

maintained package. 

Word2vec and related predictive models are supported in 

general deep learning R packages tensorFlow and keras 

introduced earlier. Package fastTextR provides interface to 

the „Library for fast text representation and classification”, 

which can be viewed as an evolution of word2vec. text2vec 

is a standalone package, which provides implementation of 
GloVe in addition to several related functionalities. 

For many tasks, pretrained word embeddings might suffice, 
which are available from various sources, such as 
http://vectors.nlpl.eu/repository/. 

http://vectors.nlpl.eu/repository/
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4.2 Text annotation 

R package supporting NER analysis is cleanNLP. This package 

offers two analysis backends, a Java-based Stanford CoreNLP 
and Python-based Spacy. The CoreNLP system is with over 
4.000 citations to date a favourite choice across research 
disciplines. The newer Spacy system is claimed to have the 
fastest syntactic parser (https://spacy.io/usage/facts-figures). 

Both backends offer a range of other natural language 

processing functions beyond NER. Alternatives to cleanNLP 

include the openNLP R package, which provides access to 

functions in Apache Open NLP tools. 

To the best of our knowledge, there are no R packages 
available in the official CRAN repository, which would provide 
entity linking to knowledge graphs, fine-grained entity 

classification (“wikification”), or computation of entity salience. 
However, there are several open source web-based systems, 
such as DBpedia Spotlight (Mendes et al., 2011) or 
EntityClassifier (Dojchinovski et al, 2017), which provide 
application programming interfaces (APIs) for which R-based 
wrappers are available. For entity salience, there are several 
Python packages as well as web applications providing this 
functionality. One example is the SWAT system (Ponza, 
Ferragina, and Piccinno, 2018), which also provides a 
convenient web interface (https://swat.d4science.org/). 

For sentiment analysis, there are several packages in CRAN 

inluding: syuzhet, SentimentAnalysis, and RSentiment. 

Applicable is also the general purpose coreNLP package, which 

provides interface to Java implementation in Stanford CoreNLP. 
Outside the R ecosystem, LIWC (Pennebaker et al., 2015) 
provides a notable implementation of a sentiment analysis 
system used in many studies in behavioral sciences. 
SentiStrength (Thelwall, 2017) is another sentiment analysis 
system, considered as state-of-the-art by Saif et al. (2016). In last 
several years, web services for sentiment analysis have also 
gained on popularity, their review is provided by Serrano-
Guerrero et al. (2015). 

Finally, GATE NLP framework (https://gate.ac.uk/)  is a 
representative of an integrated system providing coverage of 
most of the tasks described above. The system is written in Java 
but provides easy-to-use graphical user interface. 

https://spacy.io/usage/facts-figures
https://swat.d4science.org/
https://gate.ac.uk/
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4.3 Document classification 

An implementation of nearest centroid classifier is provided by 

R package lolR. Implementation of SVM is included in the 

e1071 R package. Handling multilabel classification problems 

in R is described in (Probst et al., 2017). 

4.4 Knowledge graphs 

There is an official R package providing access to Wikidata API: 

WikidataQueryServiceR. For DBpedia, there is R package 

datamart, but it does not seem to be maintained for several 

years. Both packages allow to issue queries in the SPARQL 
language. Fundamentals of SPARQL can be learned at various 
online tutorials (e.g. https://www.w3.org/2009/Talks/0615-
qbe/). 

4.5 WordNet and related lexical resources 

Access to WordNet is available in R via the CRAN package 

wordnet. Note that the setup of this package is somewhat 

more involved, since it requires setup of R-Java bindings and 
also manual installation of WordNet. WordNet can also be used 
online at the web site of Princeton University at  
https://wordnet.princeton.edu/. 

To our knowledge, there is no package in CRAN which can 
directly compute word similarity with WordNet. There are, 
however, multiple implementations for Python. For example, 
the Pyhon sematch library (https://github.com/gsi-
upm/sematch) also provides a freely accessible web interface 
(http://sematch.cluster.gsi.dit.upm.es/). 

Software references 

Abadi, Martín et al. (2016). “Tensorflow: A system for large-
scale machine learning”. In: 12th USENIX Symposium on 
Operating Systems Design and Implementation (OSDI 16), pp. 
265–283. 

Atzmueller, Martin and Florian Lemmerich (2012). “VIKAMINE–
open-source subgroup discovery, pattern mining, and 
analytics”. In: Joint European Conference on Machine Learning 
and Knowledge Discovery in Databases. Springer, pp. 842–845. 

https://www.w3.org/2009/Talks/0615-qbe/
https://www.w3.org/2009/Talks/0615-qbe/
https://wordnet.princeton.edu/
https://github.com/gsi-upm/sematch
https://github.com/gsi-upm/sematch
http://sematch.cluster.gsi.dit.upm.es/


   
 

16 

Bergstra, James et al. (2011). “Theano: Deep learning on GPUs 
with python”. 

In: NIPS 2011, BigLearning Workshop, Granada, Spain. Vol. 3, pp. 1–

48. 

Buchta, Christian, Michael Hahsler, and with contributions from 
Daniel Diaz (2018). arulesSequences: Mining Frequent 
Sequences. R package version 0.2-20. url: https://CRAN.R-

project.org/package=arulesSequences. 

Dojchinovski, Milan, and Tomáš Kliegr. "Entityclassifier. eu: 
real-time classification of entities in text with Wikipedia." 
Joint European Conference on Machine Learning and 
Knowledge Discovery in Databases. Springer, Berlin, 
Heidelberg, 2013. 

Chandler, Adam and Melissa Wallace (2016). “Using Piwik 
Instead of Google Analytics at the Cornell University 
Library”. In: The Serials Librarian 71.34, pp. 173–179. 

Chollet, Francois et al. (2018). “Keras: The python deep learning 
library”. In: Astrophysics Source Code Library. 

Keyes, Oliver, Bob Rudis, and Jay Jacobs (2016). “R Packages to 
Aid in Handling Web Access Logs.” In: R Journal 8.1. 

Khalil, Salim and Mohamed Fakir (2017). “RCrawler: An R 
package for parallel web crawling and scraping”. In: 
SoftwareX 6, pp. 98–106. 

Mendes, Pablo N et al. (2011). “DBpedia spotlight: shedding 
light on the web of documents”. In: Proceedings of the 7th 
international conference on semantic systems. ACM, pp. 1–8. 

Mollica, Cristina and Luca Tardella (2016). “PLMIX: An R package 
for modeling and clustering partially ranked data”. In: arXiv 
preprint arXiv:1612.08141. 

Pennebaker, James W et al. (2015). The development and 
psychometric properties of LIWC2015. Tech. rep. LIWC.net, 
Austin, Texas. 

Ponza, Marco, Paolo Ferragina, and Francesco Piccinno (2018). 
“SWAT: A System for Detecting Salient Wikipedia Entities in 
Texts”. In: arXiv preprint arXiv:1804.03580. 

Probst, Philipp et al. (2017). “Multilabel classification with R 
package mlr”. In: arXiv preprint arXiv:1703.08991. 

Saif, Hassan et al. (2016). “Contextual Semantics for Sentiment 
Analysis of Twitter”. In: Inf. Process. Manage. 52.1, pp. 5–19.  

https://cran.r-project.org/package=arulesSequences
https://cran.r-project.org/package=arulesSequences
https://cran.r-project.org/package=arulesSequences


   
 

17 

Seide, Frank and Amit Agarwal (2016). “CNTK: Microsoft’s 
open-source deeplearning toolkit”. In: Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. ACM, pp. 2135–2135. 

Serrano-Guerrero, Jesus et al. (2015). “Sentiment analysis: A 
review and comparative analysis of web services”. In: 
Information Sciences 311, pp. 18–38. 

Simunek, Milan (2003). “Academic KDD project LISp-miner”. In: 
Intelligent Systems Design and Applications. Springer, pp. 
263–272. 

Thelwall, Mike (2017). “The Heart and Soul of the Web? 
Sentiment Strength Detection in the Social Web with 
SentiStrength”. In: Cyberemotions: Collective Emotions in 
Cyberspace. Cham: Springer International Publishing, pp. 
119– 134.  

Vojíř, Stanislav et al. (2018). “EasyMiner.eu: Web framework 
for interpretable machine learning based on rules and 
frequent itemsets”. In: Knowledge-Based Systems 150, pp. 
111–115. 

 


