Notation

$\boldsymbol{M}_{v}, \boldsymbol{K}_{v}, \boldsymbol{C}_{v}$	Mass, stiffness and damping matrices of the vehicle
$\boldsymbol{X}_{v}, \dot{\boldsymbol{X}}_{v}, \ddot{\boldsymbol{X}}_{v}$	Displacement, velocity and acceleration vectors of the vehicle
$\boldsymbol{F}_{v t}$	Load vector acting on the vehicle
$\boldsymbol{F}_{v t}^{s}$	Load vector acting on the vehicle running on straight track
\boldsymbol{F}_{c}^{s}	Sub-load vector acting on car body on straight track
$\boldsymbol{F}_{t_{i}}^{s}(i=1 \sim 2)$	Sub-load vector acting on frames 1~2 on straight track
$\boldsymbol{F}_{w_{i}}^{s}(i=1 \sim 4)$	Sub-load vector acting on wheelsets 1~4 on straight track
$\boldsymbol{F}_{v t}^{c}$	Load vector acting on vehicle caused by geometry parameters of curved track
\boldsymbol{F}_{c}^{c}	Sub-load vector acting on the car body caused by geometry parameters of curved
$\boldsymbol{F}_{t_{i}}^{c}(i=1 \sim 2)$	Sub-load vector acting on frames 1~2 caused by geometry parameters of curved
$\boldsymbol{F}_{w_{i}}^{c}(i=1 \sim 4)$	Sub-load vector acting on wheelsets 1~4 caused by geometry parameters of curved
\boldsymbol{F}_{n}	track
$\boldsymbol{M}_{t}, \boldsymbol{K}_{t}, \boldsymbol{C}_{t}$	Mass, stiffness and damping matrices of the track
$\boldsymbol{X}_{t}, \dot{\boldsymbol{X}}_{t}, \ddot{\boldsymbol{X}}$	Displacement, velocity and acceleration vectors of the track
$\boldsymbol{F}_{t v}$	Load vector acting on the track
$\boldsymbol{F}_{r}^{L}, \boldsymbol{F}_{r}^{R}, \boldsymbol{F}_{s}$	Sub-load vectors acting on the left rail, right rail and sleeper
\boldsymbol{a}_{n}	Prediction coefficient vector
$\widetilde{\boldsymbol{C}}$	Past forces vector

Λ, Φ	Eigenvalue and eigenvectors matrices
x, y, z	Longitudinal, Lateral, vertical components along absolute coordinate system
$\alpha=L, R$	Left and right side of the vehicle or track
$F_{i x}^{\alpha}, F_{i y}^{\alpha}, F_{i z}^{\alpha}$	Longitudinal, lateral and vertical forces acting on the i th wheelset
$r_{w_{i}}^{\alpha}$	Instant rolling radius of the wheels of the i th wheelset
d_{0}	Half of the lateral distance between wheel-rail nominal contact points
m_{0}	Vehicle mass
$\psi_{w_{i}}$	Yaw angle of the i th wheelset
g	Gravity acceleration
V	Running speed
m_{c}	Car body mass
r_{0}	Wheel nominal radius
$h_{t w}$	Height of frame's centre of gravity (COG) above wheelset's COG
$h_{b t}$	Height of secondary suspension centre above frame's COG
$h_{c b}$	Height of car body's COG above secondary suspension centre
R_{c}	Curvature radius of the track at the location of car body's COG
$I_{c x}, I_{c z}$	Roll and yaw moments of inertia of car body
$I_{t x}, I_{t z}$	Roll and yaw moments of inertia of frame
$R_{t i}$	Curvature radius of the track at the location of the i th frame's COG
$\phi_{\text {sec }}, \ddot{\phi}_{\text {sec }}$	Superelevation angle and its second derivative at the location of car body's COG
$\phi_{\text {seti }}, \ddot{\phi}_{\text {seti }}$	Superelevation angle and its second derivative at the location of the i th frame's COG
m_{w}	Wheelset mass
$I_{w x}, I_{w_{y}}, I_{w_{z}}$	Roll, pitch and yaw moment of inertia of wheelset
$\phi_{\text {sewi }}, \quad \dot{\phi}$	Superelevation angle and its first derivative, second derivative at the location of the

$\ddot{\phi}_{\text {sewi }}$	i th wheelset's COG
$R_{w i}$	Curvature radius of the track at the location of the i th wheelset's COG
$\dot{\beta}_{w i}$	Angular velocity of the ith wheelset in pitch direction
$k_{p x}, k_{p y}, k_{p z}$	Longitudinal, lateral, vertical stiffness of primary suspension
$c_{p x}, c_{p y}, c_{p z}$	Longitudinal, lateral, vertical damping coefficients of primary suspension
$k_{s x}, k_{s y}, k_{s z}$	Longitudinal, lateral, vertical stiffness of secondary suspension
$c_{s x}, c_{s y}, c_{s z}$	Longitudinal, lateral, vertical damping coefficients of secondary suspension
d_{w}	Half of the lateral distance between primary suspensions
d_{s}	Half of the lateral distance between secondary suspensions
l_{t}	Half of wheelbase
l_{c}	Half of the distance between bogie centres
Y_{k}, Z_{k}, Φ_{k}	k th mode shape functions of rail's lateral, vertical bending and torsion
N_{w}	Number of wheelsets
$x_{w_{i}}$	Longitudinal coordinate of the i th wheelset
K	Number of modes considered for the rail beam
$M_{w_{i}}^{\alpha}$	Equivalent moment acting on rails from the i th wheelset
P	Prediction order
$a_{n-\vartheta}$	Prediction coefficient
$f_{w r}$	Wheel-rail coefficient of friction
λ_{n}, ϕ_{n}	Eigenvalues and normalized eigenvectors of covariance matrix
C_{0}	Variance of the random field of wheel or rail profiles
x_{i}, x_{j}	Coordinates of two discrete points of wheel or rail profiles
l	Correlation length
e_{r}	Relative error

b	Limit value
m	Number of levels of SS
N	Number of samples at each level of SS
P_{F}	Failure probability
P_{j}	Conditional failure probability
p_{0}	Level probability
N_{T}	Total number of samples
W	Ride index
f	Time step
Δt	Travel distance
S	Distribution parameter, such as mean value or variance
η	Value of distribution parameter where partial derivative is evaluated
$\bar{\eta}$	Normalized sensitivity
e_{η}	

