Notation

M_v, K_v, C_v	Mass, stiffness and damping matrices of the vehicle
$X_v, \dot{X}_v, \ddot{X}_v$	Displacement, velocity and acceleration vectors of the vehicle
F_{vt}	Load vector acting on the vehicle
F_{vt}^s	Load vector acting on the vehicle running on straight track
F_c^s	Sub-load vector acting on car body on straight track
$\boldsymbol{F}_{t_i}^s(i=1{\sim}2)$	Sub-load vector acting on frames 1~2 on straight track
$\boldsymbol{F}_{w_i}^s(i=1{\sim}4)$	Sub-load vector acting on wheelsets 1~4 on straight track
F_{vt}^c	Load vector acting on vehicle caused by geometry parameters of curved track
F_c^c	Sub-load vector acting on the car body caused by geometry parameters of curved
	track
$\boldsymbol{F}_{t_i}^c(i=1{\sim}2)$	Sub-load vector acting on frames 1~2 caused by geometry parameters of curved
	track
$\boldsymbol{F}_{w_i}^c(i=1{\sim}4)$	Sub-load vector acting on wheelsets 1~4 caused by geometry parameters of curved
	track
$\boldsymbol{M}_t, \boldsymbol{K}_t, \boldsymbol{C}_t$	Mass, stiffness and damping matrices of the track
$X_t, \dot{X}_t, \ddot{X}_t$	Displacement, velocity and acceleration vectors of the track
F_{tv}	Load vector acting on the track
$\boldsymbol{F}_{r}^{L}, \boldsymbol{F}_{r}^{R}, \boldsymbol{F}_{s}$	Sub-load vectors acting on the left rail, right rail and sleeper
a_n	Prediction coefficient vector
\overline{F}_n	Past forces vector
С	Covariance matrix
ĩ	Approximated covariance matrix by KL expansion

Л, Ф	Eigenvalue and eigenvectors matrices
<i>x</i> , <i>y</i> , <i>z</i>	Longitudinal, Lateral, vertical components along absolute coordinate system
$\alpha = L, R$	Left and right side of the vehicle or track
$F^{\alpha}_{ix}, F^{\alpha}_{iy}, F^{\alpha}_{iz}$	Longitudinal, lateral and vertical forces acting on the <i>i</i> th wheelset
$r_{w_i}^{lpha}$	Instant rolling radius of the wheels of the <i>i</i> th wheelset
d_0	Half of the lateral distance between wheel-rail nominal contact points
m_0	Vehicle mass
ψ_{w_i}	Yaw angle of the <i>i</i> th wheelset
g	Gravity acceleration
V	Running speed
m _c	Car body mass
<i>r</i> ₀	Wheel nominal radius
h_{tw}	Height of frame's centre of gravity (COG) above wheelset's COG
h _{bt}	Height of secondary suspension centre above frame's COG
h _{cb}	Height of car body's COG above secondary suspension centre
R _c	Curvature radius of the track at the location of car body's COG
I_{cx}, I_{cz}	Roll and yaw moments of inertia of car body
I_{tx}, I_{tz}	Roll and yaw moments of inertia of frame
R _{ti}	Curvature radius of the track at the location of the <i>i</i> th frame's COG
$\phi_{sec}, \ddot{\phi}_{sec}$	Superelevation angle and its second derivative at the location of car body's COG
$\phi_{seti}, \ddot{\phi}_{seti}$	Superelevation angle and its second derivative at the location of the <i>i</i> th frame's COG
m_w	Wheelset mass
I_{wx}, I_{w_y}, I_{w_z}	Roll, pitch and yaw moment of inertia of wheelset
φ _{sewi} , ģ _{sewi} ,	Superelevation angle and its first derivative, second derivative at the location of the

<i></i> φ _{sewi}	<i>i</i> th wheelset's COG
R _{wi}	Curvature radius of the track at the location of the <i>i</i> th wheelset's COG
$\dot{\beta}_{wi}$	Angular velocity of the ith wheelset in pitch direction
k_{px}, k_{py}, k_{pz}	Longitudinal, lateral, vertical stiffness of primary suspension
c_{px}, c_{py}, c_{pz}	Longitudinal, lateral, vertical damping coefficients of primary suspension
k_{sx}, k_{sy}, k_{sz}	Longitudinal, lateral, vertical stiffness of secondary suspension
C_{SX}, C_{SY}, C_{SZ}	Longitudinal, lateral, vertical damping coefficients of secondary suspension
d_w	Half of the lateral distance between primary suspensions
d_s	Half of the lateral distance between secondary suspensions
l_t	Half of wheelbase
l _c	Half of the distance between bogie centres
Y_k, Z_k, Φ_k	kth mode shape functions of rail's lateral, vertical bending and torsion
N _w	Number of wheelsets
x_{w_i}	Longitudinal coordinate of the <i>i</i> th wheelset
K	Number of modes considered for the rail beam
$M^{lpha}_{w_i}$	Equivalent moment acting on rails from the <i>i</i> th wheelset
Р	Prediction order
$a_{n-\vartheta}$	Prediction coefficient
f _{wr}	Wheel-rail coefficient of friction
λ_n , $oldsymbol{\phi}_n$	Eigenvalues and normalized eigenvectors of covariance matrix
C ₀	Variance of the random field of wheel or rail profiles
x_i, x_j	Coordinates of two discrete points of wheel or rail profiles
l	Correlation length
e _r	Relative error

b	Limit value
m	Number of levels of SS
Ν	Number of samples at each level of SS
P_F	Failure probability
Pj	Conditional failure probability
p_0	Level probability
N _T	Total number of samples
W	Ride index
f	Vibration frequency in Hz
Δt	Time step
S	Travel distance
η	Distribution parameter, such as mean value or variance
$ar\eta$	Value of distribution parameter where partial derivative is evaluated
e_η	Normalized sensitivity