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Appendix – Proofs of Theorems 1-3 

Proof of Theorem 1 

Let ˆ ( ( ) )C I T X u   and consider the PPV of this classifier, 
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We will first show ( )PPV u  is an increasing function of by equivalently showing that 
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For any 1 2u u , it follows from the law of total probability that 
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where  2 1( ) 0 , ( )P T X u C T X u      and * 1
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Because 1( )r u  is a weighted average of 2( )r u  and *r , this implies 1 2( ) ( )r u r u  and this 

shows that ( )r u  and hence ( )PPV u  are increasing in u .  Similarly it can be shown that 

( )NPV u is decreasing in u  and it therefore follows that the PROC is monotone. 

 

Proof of Theorem 2 

If ( )T X  is the log-likelihood ratio then Theorem 1 implies the PROC curve is increasing, 

which implies16 that ( ) ( )G Fh u h u  and ( ) ( )F Gh u h u  hold.  The theorem then follows 

from necessary and sufficient conditions given in section 4. 

 

Proof of Theorem 3 

Define 1R  to be the set of all 1 2( , )x x  at the second stage for which the classifier 

predicts class 1, and let 
1

cR  denote the complement of 1R .   Then, 
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It is clear that to minimize 2( )OER u  we should take 1R  to include all points 1 2( , )x x  for 

which 1 1 2 0 1 2 0 1( , ) / ( , ) /h x x h x x    , which is equivalent to the claim in the theorem. 

 


