Appendix — Proofs of Theorems 1-3

Proof of Theorem 1

Let C =1 (T(X)>u) and consider the PPV of this classifier,
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We will first show PPV(u) is an increasing function of by equivalently showing that
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is an increasing function of u. With T(X) = Iog(hl(X)/hO(X)),
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For any u, <u,, it follows from the law of total probability that
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Because r(u,) is a weighted average of r(u,) and r", this implies r(u,) <r(u,) and this
shows that r(u) and hence PPV(u) are increasing in u. Similarly it can be shown that

NPV(u) is decreasing in u and it therefore follows that the PROC is monotone.

Proof of Theorem 2

If T(X) is the log-likelihood ratio then Theorem 1 implies the PROC curve is increasing,
which implies?® that h,(u) < h.(u) and h.(u) <hg(u) hold. The theorem then follows

from necessary and sufficient conditions given in section 4.

Proof of Theorem 3

Define R, to be the set of all (X, X,) at the second stage for which the classifier
predicts class 1, and let R; denote the complement of R,. Then,

OER, () = 7,FPR,(U) + 7,FNR ()
= 7,P(T,(X,) > u,|C = 0)+ 7,P(u, <T,(X,) <u,, (X, X,) eR,|C =0)
+ mP(T,(X)<U,|C=1)+m,P(u, <T,(X) < Uy, (X,X,) eR¢|C =1)
= 7,P(T,(X,) > u,|C = 0)+ 7,P(T,(X,) < Uy |C =1) + 7,P(u, < T,(X,) <u,|C =1)

+ ”Rll{u0 <T,(x,) < U Hmhy (X, %) — 7,0, (X, X,) Yax, dx, ,
It is clear that to minimize OER,(u) we should take R, to include all points (x,, X,) for

which h,(x;,x,)/ hy(X,,X,) > 7,/ 7, , which is equivalent to the claim in the theorem.



