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| Effect of lag in the method of transfer entropy

We also check the case of lag =2 in Eq. (1). The results for lag =2 shown in Fig. S1 is consistent with

Fig. 2 (lag =1) in the main text.
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Fig. S1The results of lag =2. This figure corresponds to Fig. 2.
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Il Distribution of out-degree

The heterogeneity can be explained by the distribution of the node degree, i.e., if the
distribution satisfies a power-law form, the network is considered to be heterogeneous. Figure S2
shows the distribution of out-degree in log-log plot for all derived networks. It is evident that the
range of out-degree is from 1 to ~100, almost across two scales for each stage, and a power-law
form is observed in the distribution of out-degree in each network in (a-e) for pre-TTX, in (f-j) for
during-TTX and in (k-o) for post-TTX. The scaling exponent b differs between the stages. In
particular, the exponent of during-TTX —1.50 + 0.12 (meand=se) is significantly smaller than pre-
TTX —1.36 £ 0.11 (paired t-test, P =0.05) or post-TTX 1.31 + 0.06 (paired t-test, P =0.01).

Based on the method of Ref.[1], we calculate the Log-likelihood ratio Lg for the out-degrees
within each network. If Lz >0, the out-degrees are more likely in the power-law distribution, and if
Lr <0, the out-degrees are more likely in the exponential distribution. Table S1 shows that the out-
degrees of most the networks examined in this paper more likely satisfy a power-law distribution,

with the exception of SCN3 or SCN5 in the stage of post-TTX.

Table S1 Log-likelihood ratio Lz between power-law distribution and exponential distribution

for out-degrees. If Lg >0, the out-degrees are more likely in the power-law distribution, and if Lg

<0, the out-degrees are more likely in the exponential distribution. P is the significance value for
that direction (the value of p >0.05 corresponds to significant result).

Lg, P SCN1 SCN2 SCN3 SCN4 SCN5
pre-TTX 0.82, 0.41 | 0.63, 0.53 | 0.05, 0.96 | 1.43, 0.15 | 0.97, 0.33
dur-TTX 1.09, 0.27 | 0.56, 0.58 | 1.11, 0.27 | 0.95, 0.34 | 3.02, 0.00
post-TTX 5.47,0.00 | 1.30, 0.19 0.00,1.00 1.05, 0.29 | -0.24, 0.81

Il Distribution of in-degree
Figure S3 shows the distribution of in-degree in log-log plot for all derived networks. It is evident
that the range of in-degree is from 1 to ~100, almost across two scales for each stage, and a power-
law form is observed in the distribution of in-degree in each network in (a-e) for pre-TTX, in (f-j) for
during-TTX and in (k-o) for post-TTX. The scaling exponent b differs between the stages. In
particular, the exponent of during-TTX —1.92 + 0.21 (meand=se) is significantly smaller than pre-
TTX —1.45 4 0.14 (paired t-test, P =0.01) or post-TTX 1.41 + 0.09 (paired t-test, P =0.02).

Based on the method of Ref.[1], we also calculate the Log-likelihood ratio Lg for the in-degrees
within each network. Table S2 shows that the in-degrees of nine of the networks examined in this

paper more likely satisfy a power-law distribution, and the in-degrees of the other six networks



more likely satisfy in an exponential distribution.

Table S2 Log-likelihood ratio Lg between power-law distribution and exponential distribution
for in-degrees. If Lz >0, the in-degrees are more likely in the power-law distribution, and if Lz <O,
the in-degrees are more likely in the exponential distribution. P is the significance value for that

direction (the value of p >0.05 corresponds to significant result).

Lg, P SCN1 SCN2 SCN3 SCN4 SCN5
pre-TTX 5.76, 0.00 | -1.10, 0.27 | -0.49, 0.62 | 0.32, 0.75 | -0.61, 0.54
dur-TTX -0.33, 0.74| 0.93, 0.35| -3.16, 0.00 | 0.67, 0.50 | 1.34, 0.18
post-TTX -0.48, 0.00 | 5.10, 0.00 | 5.32, 0.00| 6.22, 0.00 | 0.41, 0.68
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Fig. S2 The distribution of out-degree for each slice, (a-€) in the stage of pre-TTX, (f-]) in the
stage of during-TTX , (k-0) in the stage of post-TTX. X-axis and Y-axis represents the node degree
Kout and the number of nodes with Kou, respectively. The parameter b represents the slope of the
fitted straight line, i.e., the scaling exponent. The dotted line indicates the start point for the fitted

straight line
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Fig. S3 The distribution of in-degree for each slice, (a-e) in the stage of pre-TTX, (f-j) in the stage
of during-TTX, (k-0) in the stage of post-TTX. X-axis and Y-axis represents the node degree Kin
and the number of nodes with Ki,, respectively. The parameter b represents the slope of the fitted
straight line, i.e., the scaling exponent. The dotted line indicates the start point for the fitted straight

line



IV Correlation between out-degree and in-degree

We examine whether there is a correlation between out-degrees and in-degrees (Fig. S4). A
negative correlation is observed in the stage of pre-TTX (R=-0.30%0.03, mean * se) and post-TTX
(R=-0.297%0.03, mean * se), and weak or no correlation is observed in the stage of during-TTX (R=-
0.08 0.1, mean * se). The correlation coefficient R is significantly larger in the stage of pre-TTX
(paired t-test, P=0.01) or post-TTX (paired t-test, P =0.01) than in the stage of during-TTX. A
negative correlation in the stage of pre-TTX and post-TTX represents that a node of a larger out-
degree is likely to have a smaller in-degree, and vice versa, e.g., the neurons in the VL which have

more out-links to the DM neurons, but have less in-links.
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Fig. S4 The correlation coefficient R between out-degree and in-degree within each stage.

V Relationship between the synchronization and the average node-degree
We use the method of univariate/multiple linear regression to check the relationship of the
synchronization degree p to the average node degree K. We find that the relationship is not
significant. In particular, for univariate linear regression, the Pearson coefficient is R=0.5 (P =0.06).
The results for multiple linear regression are as follows. The contribution of three variables, which
are the average node degree, the disassortativity coefficient for the out-degrees and the
disassortativity coefficient for the in-degrees, to the synchronization degree is examined by the
method of multiple linear regression (sample size is 3*5=15). There is a significant linear
relationship of the synchronization degree to these three variables together (Multiple R =0.88, F of
12.2 > Significance F of 0.0008). The relationship of the synchronization degree to the average node

degree alone is not significant (P = 0.99), the relationship of the synchronization degree to the



disassortativity coefficient for the out-degrees alone is also not significant (P = 0.49), but the
relationship of the synchronization degree to the disassortativity coefficient for the in-degrees is
significant (p = 0.001). Therefore, we conclude that the effect of the average node degree is not

significant.
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