Appendix A: FEM verification

The goal of this appendix is to validate the structural performance of a solution selected from the Pareto fronts of Fig. 6 by using the Ansys® software. Indeed, we select the solution that corresponds to minimum reliability in cluster 6 (indicated by a red point in Fig. 6). First, by using Eq. (57), we can deduce the reliability of the two products (Machine A, Machine B). We then consider the second product (Machine B) whose characteristics are $R^{1}_{\text{product}}=0.5027$ and $R^{2}_{\text{product}}=0.5$ respectively. After that, by using the Ansys® Workbench tool, we verified structural performances for the gear pair, pinion and gearwheel shafts: the dedendum bending strength, surface contact strength and Von Mises stress. These results are compared with those given by the ISO standard and the ASME code.

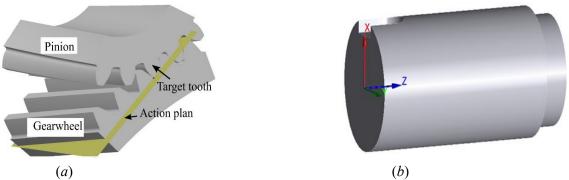
The FEM based study is performed as follows. In SolidWorks 2015, 3D-CAD models of gear pair, pinon and gearwheel shafts are built based on the geometry data of the selected solution. The involute tooth profile is created by using "Equation Driven Curve" in SolidWorks. The geometric models are then imported directly into Ansys Workbench 16, without losing accuracy, via a bidirectional interface. The gear finite element model includes five teeth for the gearwheel and five teeth for the pinion. The middle pinon tooth is at the beginning of the mesh in the model configuration, it represents the target tooth in static analysis in order to determinate the bending and contact stress (Fig. 7a). The finite element models of the pinion and gearwheel shafts are also built by including keyway dimensions that are designed in accordance to the ISO standard. Due of the model symmetry, only a half part of the shaft is considered in static analysis (Fig. 7b). In Ansys Workbench, we created two static structural analyses: the first evaluates the bending and contact stress of the gear pair (Fig. 8a) and the second evaluates the Von Mises stress of the pinion and gearwheel shafts (Fig. 8b).

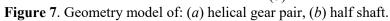
The data used in the finite element analysis and the results of two static structural analyses are summarized in Tables 9 and 10. Fig. 9 illustrates some selected FEM results. Globally, we noticed that the numerical results predicted by analytical formulas employed during the optimization process, particularly the ISO standard for gears and the ASME code for shafts, are in good agreement with those given by FEM using the Ansys ® software.

Nomenclature

Р	Transmitted power (W)	Z_W	Work harden coefficient
и	Gear ratio	Z_X	Size coefficient
α	Pressure angle (degree)		$_n$ Experimental gear bending fatigue strength(N/m ²)
β	Helix angle (degree)	$o_{H lin}$	m Experimental gear contact fatigue strength (N/m^2)
а	Distance center (mm)	σ_{uts}	Ultimate tensile strength (N/m ²)
m_n	Normal module (mm)	$K_{H\beta}$	Longitudinal load distribution coefficient
D_1^{n}	Pinion pitch diameter (mm)	$K_{H\alpha}$	Transverse load distribution coefficient
D_2	Gearwheel pitch diameter (mm)	K_V	Dynamic load coefficient
d_{a1}	Pinion shaft diameter (mm)	K_A	Work condition coefficient
d_{a2}	Gearwheel shaft diameter (mm)	$K_{F\beta}$	Longitudinal load distribution coefficient
F_t	Rated tangential tooth force at transverse pitch (N)	$K_{F\alpha}$	Transverse load distribution coefficient
N_1	Rotation speed (rmp)	Y_{β}	Helix angle coefficient
Z_{β}	Helix angle coefficient	$Y_{\mathcal{E}}$	Contact ratio factor
Z_{ε}	Contact ratio coefficient	Y_{NT}	Life coefficient
Z_H	Nodal field coefficient	$Y_{S\alpha}$	Dedendum stress concentration coefficient
Z_N	Life coefficient	Y_X	Size coefficient
Z_L	Lubricant coefficient	$Y_{\delta rel}$	T Relative sensitive coefficient
Z_V	Velocity coefficient	$Y_{F\alpha}$	Tooth form factor
Z_R	Tooth fineness coefficient	Y _{Rrel1}	Relative surface condition coefficient
Z_E	Elastic coefficient	Y_{ST}	Experimental gear dedendum stress concentration coefficient
MOOP	Multi-Objective Optimization Problem	DIN	Deutsches Institut für Normung
ASME	American Society of Mechanical Engineers	SKF	Svenska KullagerFabriken
ISO	International Organization for Standardization	AGMA	A American Gear Manufacturers Association
NSGA-I	I Non-dominated Sorting Genetic Algorithm		

-	 	 	 	


Material	42CrMo4	
Common geometric	Normal module (mm) =3.5	Width (mm)= 28.021
parameters	Normal pressure angle(deg)=20	Helix angle (deg)= 15
	Contact ratio=2.115	
Pinion	Number of teeth	22
	Speed (rpm)	1150
	Torque (Nm)	124.556
Gearwheel	Number of teeth	77
	Speed (rpm)	328.57
	Torque (Nm)	435.946
Connections	Contact	Five pinion tooth surfaces
	Target	Five wheel tooth surfaces
	Contact Type	Frictionless
	Formulation	Augmented Lagrange
	Penetration Tolerance Value	1E-3mm
	Update Stiffness	Each Iteration
	Interface Treatment	Adjust to Touch
	Joints (Pinion - Gearwheel hubs)	Body-Ground Revolute joint
Mesh	Physic preference	CFD
	Element order	Quadratic


 Table 9. Main parameters of the gear pair and the associate FEM study

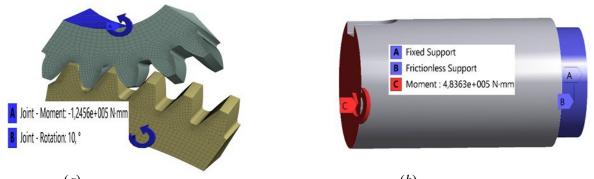

	Method	Sweep		
	Sweep Number Division	20		
	Pinion and Gearwheel sizing	1mm		
	Contact surfaces and root teeth sizing	0.15mm		
Total number of nodes		432962		
	Total number of elements	115024		
Analysis setting	Auto Time stepping	On		
	Initial Substeps	80		
	Minimum Substeps	80		
	Maximum Substeps	100		
	Large Deflection	On		
Loads and Supports	Joint- Moment	Joint Revolute - Ground to pinon		
(see Fig. 8a)	DOF	Rotation Z		
	Magnitude	Tabular Data (-124.556Nm)		
	Joint- Rotation	Joint Revolute - Ground to Gearwheel		
	DOF	Rotation Z		
	Magnitude	10 degree		
Comparison between FEM and ISO results				
Dedendum bending	FEM: 142.37 MPa	ISO: 166.56 MPa		
stress				
Surface contact	FEM: 729.33 MPa	ISO: 706.88 MPa		
stress				

Table 10. Main parameters of the shafts and the associate FEM study

Material	25CrMo4			
Pinion shaft	Diameter	46.32 mm		
	Length	200 mm		
	Speed	1150 rpm		
	Torque	124.556 Nm		
Gearwheel shaft	Diameter	51.07 mm		
	Length	200 mm		
	Speed	328.57 rpm		
	Torque	435.946 Nm		
Mesh	Method	Hex Dominant		
	Body sizing	2mm		
	Fillet keyway sizing	0.2 mm		
	Total number of nodes (half pinion)	509182		
	Total number of nodes (half shaft)	1028104		
	Total number of elements (half pinion)	148973		
	Total number of elements (half shaft)	300775		
Loads and Supports	Fixed supports	Frictionless Support		
(see Fig. 8 <i>b</i>)	Pinion shaft moment	X component = -74.933 Nm		
		Y component = 198.860 Nm		
		Z component = 124.556 Nm		
	Gearwheel shaft moment	X component= -74.933 Nm		
		Y component = 198.860 Nm		
		Z component = 435.946 Nm		
Comparison between FEM and ASME results				
Von Mises stress -	FEM: 82.35 MPa	ASME: 93.574 MPa		
pinon shaft				
Von Mises stress -	FEM: 126.69 MPa	ASME: 132.58 MPa		
gearwheel shaft				

(a) (b) Figure 8. FEM loads and supports: (a) two joints applied on hubs, (b) boundary conditions.

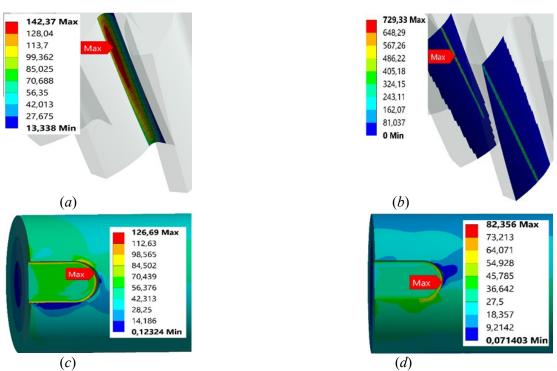


Figure 9. FEM Results: (a) bending stress, (b) contact stress, (c) gearwheel shaft (d) pinion shaft.