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ONLINE APPENDIX 
This appendix continues the discussion of Z Energy’s use of Swarm.AI® to converge 
on strategic priorities. Also presented are implications for future research. 
 
Z Energy: Converging on Strategic Priorities 
For interested readers, the following demonstrates the Swarm.AI® post-processing 
diagnostics available to Z Energy’s leadership and employee teams.  
 
The swarm decision space shows the swarm of 61 individual contributors deciding 
which initiative should receive the lowest priority. The post-processing diagnostics 
shown in the figures below are available immediately after each swarm concludes.  
 

 
Figure A1: Snapshot of a networked “human swarm” answering a question as a unified system. 
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Participant Support vs Time Support Change vs Time 

 

 

Figure A2: Plots of the behavioral data collected during the real-time swarming process 
 
The left side (by the y-axis) of the stacked area chart shows the initial starting 
positions of swarm participants. These starting positions (T=0 seconds) reflect top-of-
mind opinions and, as the stacked area chart shows, there were sizable factions 
supporting each of the five strategic options as lowest priority. If a vote had been 
taken at T=0 seconds, Customer Focus would have received lowest priority. At T=10 
seconds, as undecided participants joined the deliberation process, ERP and Process 
Automation emerged as close contenders for lowest priority. At T=15 seconds, there 
was a three-way tie for lowest priority between Process Automation, Customer Focus, 
and ERP. By T=20 seconds, the group began to converge on Process Automation and 
the end-state at T=59 seconds shows the swarm’s decision on Process Automation as 
lowest priority. The stacked area chart shows that the group wrestled with the 
alternative initiatives for more than 15 seconds before finding a path to the priority 
they could converge on. The Sankey Chart provides another way of looking at the 
same information and shows how options gained or lost support over time, as well as 
the options from which the emergent loser (lowest priority) captured support. 
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Histogram of Switch Frequency Support Density Map 

  

Figure A3: Plots of the behavioral data collected during the real-time swarming process 
 
The histogram more clearly shows how many times participants switched their 
opinions during the 59 second deliberation. The data produced by the AI engine 
show that only 18 participants were "entrenched," meaning they never switched their 
priority ratings. On the other hand, the data show that 23 participants switched their 
opinion three or more times during the deliberation. The rapidly evolving factions 
shown in the Sankey chart illustrate how a human swarm can negotiate a consensus 
and reach a conclusion on which strategic option to eliminate. 
 
At the same time, the rapidly evolving factions in the Sankey chart reflect uncertainty 
over which of the five initiatives should be identified as lowest priority. The Support 
Density map shows that Commercial Thinking was not a contender for lowest priority. 
While Process Automation was ultimately selected as lowest priority, it also shows that 
the swarm deliberated over Customer Focus, ERP, and Digitization, which produced a 
low confidence score of 15% for the swarm. The ability to visualize the uncertainty 
provides opportunity for discussion about the thinking behind the swarm’s 
deliberation.  
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Implications for Research  
Our discussion of ASI points toward six broad areas of opportunity for future 
research.  
 
Blending AI and Humans. There have been several calls for furthering an 
understanding of how to blend human and machine capabilities to improve decision 
making, to provide better predictions, and to enhance collective intelligence.i ASI 
provides an answer to these calls and also demonstrates the value of biomimicry. 
Future research into combining machine and human intelligence might likewise be 
inspired from other models of intelligent behavior found in nature, such as bacteria 
growth or root system development.ii Moreover, the present paper identifies two 
features of an AI decision-making platform—implicit confidence scores and parallel 
pooling of intelligence—that enable both large and small groups of participants to 
make more accurate predictions. Future research and development of decision 
support systems may incorporate and build upon these features. Finally, while current 
use of ASI has focused on pooling human intelligence, future research might examine 
ways in which machine agents informed by large datasets can become active 
participants in a swarm that also includes humans. The spatial-visual nature of ASI 
offers a compelling medium through which humans and machines might deliberate 
together to reach a joint decision.iii 
 
Implicit Confidence Assessment. One contribution of this research is that it identifies a 
novel way of inferring participants’ confidence in their swarm behavior (i.e. their 
pathway toward the decision option they ultimately support). Rather than soliciting a 
self-rating of their confidence in their judgments, ASI implicitly assigns a real-time 
confidence score to each participant in a swarm based on the movement of their 
magnet. This is significant because people are routinely overconfident when self-
rating their confidence in their judgments.iv As a result, scholars advocate for 
identifying implicit or behavioral assessments of confidence, such as trade volume in 
prediction markets, that can be used to weight contributions from individuals when 
pooling intelligence.v Given the success of ASI in increasing the accuracy of 
judgments, more research is needed to understand the utility of behavioral measures 
of confidence. For example, there is potential in using implicit confidence scores to 
provide real-time feedback to individuals, which could aid them in calibrating their 
judgments.vi Another option is to examine the behavioral confidence cues that 
respondents exhibit when answering online polls or surveys. For example, the time 
spent on a question or the time spent oscillating between (i.e., selecting and 
deselecting) several different response options may be useful for generating implicit 
measures of respondent confidence.  
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Decision Satisfaction and Decision Acceptance. The Z Energy case reveals qualitative 
support for employee satisfaction with the use of ASI to support decision-making. 
Satisfaction with decision outcomes is critical to sustainable agreement and 
implementation.vii Whereas the use of the Delphi technique can generate higher 
quality decisions, group members are more likely to accept decisions reached by 
consensus.viii Similar to holding group discussions that lead to a consensus decision, 
ASI allows groups of people to converge upon a decision that the group can agree 
on. There is opportunity to explore whether the decisions produced by human 
swarms result in greater group satisfaction than decisions reached by more 
traditional means, such as surveys, votes, or group discussions. Additionally, research 
shows that decision acceptance is greater with direct participation.ix What is not 
known is whether or not the use of ASI results in greater decision acceptance than 
other forms of participatory or consensus-based decision-making, such as group 
discussions. 
 
Questioning Communication. In the research on ASI referenced and the cases 
presented, swarm members did not explicitly communicate or share information with 
each other while they were swarming. Rather, they simply expressed their 
preferences—informed by their explicit and tacit knowledge—through their magnets. 
This indirect, technology-mediated form of communication was sufficient for human 
swarms to pool their intelligence and to provide more accurate predictions about 
known unknowns. This provokes an important question: What are conditions under 
which communication is helpful for or a hindrance to pooling knowledge? Future 
research is needed to identify the boundaries of when sharing information explicitly 
through spoken or written communication is more advantageous than expressing 
preferences behaviorally through a software interface. Similarly, there is an 
opportunity to explore further how participants make sense of their experience in a 
swarm. One approach might be to consider the ASI interface as a boundary object. 
Boundary objects are shared visual representations of knowledge that are shared 
among and editable by people. They provide a way to jointly represent and to 
transform their knowledge, which makes them particularly well-suited for making tacit 
knowledge more explicit.x Another approach might focus on investigating how 
seeing the swarm’s collective preference through the puck fosters metacognition, 
which can make participants reevaluate their preference.xi 
 
Integrating Intelligence Pooling Processes. Little work has considered how to 
integrate methods of pooling intelligence into an optimized process that leverages 
the strengths of different methods.xii For example, accurate predictions arise from 
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cycles of divergent thinking, where ideas are generated, and convergent thinking, 
where ideas are evaluated and agreed upon.xiii Generating ideas is a particular 
strength of crowdsourcing platforms and ASI enables groups of all sizes to converge 
on options, suggesting the promise of a process that blends the generative 
capabilities of crowdsourcing with the convergent strengths of ASI. Alternatively, 
swarms of predictors, rather than individuals or groups, might be used to determine 
which contracts to buy in a prediction market. Finally, individual and group 
performance in a swarm might be used to identify talented participants to join a team 
of forecasters or a prediction market.  
 
Swarm Dynamics. Additional research is needed to determine the enabling and 
limiting dynamics of human swarming. After all, honey bees fail to make optimal 
decisions 20% of the time.xiv Similarly, a greater understanding of the factors that 
suppress the effectiveness of swarms is needed. One area of exploration is the 
relationship between participant signals and herding behavior in the context of 
swarming. ASI is unique because it enables small and large numbers of participants 
to simultaneously and anonymously interact in parallel with each other. By contrast, 
herding behavior is commonly studied in contexts where participants interact 
sequentially. This reveals a need to understand how and if herding occurs in a 
swarming context. Indeed, prior research on ASI demonstrates that swarms have 
increased accuracy on decisions both when individual magnets are visible and when 
magnets are invisible to the swarm.xv While swarming is known to be resilient to noise 
in the system, there is a need to understand the extent of this resilience and how 
herding occurs in ASI. Future research is needed to explore whether or not making 
participants’ magnets visible to all members of a swarm promotes herding behavior. 
Finally, other dynamics of swarming are ripe for further investigation, such as 
exploring the types of biases that might operate in swarms but that have not yet been 
identified. 
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