Randomized Controlled Study to Evaluate Microbial Ecological Effects of CPP-ACP and Cranberry on Dental Plaque

N. Philip, S.J. Leishman, H.M.H.N. Bandara, D.L. Healey, and L.J. Walsh

Appendix

Appendix Table 1. Bacterial prevalence at the baseline visit across the three treatment groups

	All Samples	CPP-ACP	All-in-One	Control		
	(n = 71)	(n = 22)	(n = 23)	(n = 26)	<i>P</i> -value	
Bacterial Species	((==/	(,	(
Actinomyces gerensceriae	70 (99%)	21 (96)	23 (100%)	26 (100%)	0.32	
Corynebacterium durum	70 (99%)	21 (96)	23 (100%)	26 (100%)	0.32	
Lactobacillus gasseri	13 (18%)	2 (9%)	4 (17%)	7 (27%)	0.28	
Neisseria flavescens	63 (89%)	19 (86%)	22 (96%)	22 (85%)	0.44	
Provotella denticola	56 (79%)	17 (77%)	18 (78%)	21 (81%)	0.95	
Rothia aeria/dentocariosa	71 (100%)	22 (100%)	23 (100%)	26 (100%)	δ	
Streptococcus mitis/oralis	71 (100%)	22 (100%)	23 (100%)	26 (100%)	δ	
Streptococcus mutans	54 (76%)	16 (73%)	18 (78%)	20 (77%)	0.90	
Streptococcus parasanguinis	5 (7%)	0 (0%)	1 (4%)	4 (15%)	0.09	
Streptococcus salivarius/ thermophilus	71 (100%)	22 (100%)	23 (100%)	26 (100%)	δ	
Streptococcus sanguinis	71 (100%)	22 (100%)	23 (100%)	26 (100%)	δ	
Streptococcus sobrinus	2 (2.8%)	0 (0%)	0 (0%)	2 (8%)	0.17	
Scardovia wiggsiae	42 (59%)	13 (59%)	13 (57%)	16 (62%)	0.94	
Veillonella parvula	71 (100%)	22 (100%)	23 (100%)	26 (100%)	δ	

Baseline prevalence data showing number of samples in which the bacterial species was detected and values in brackets representing % prevalence. No significant differences between the treatment groups at the baseline visit (P > 0.05; chi-square test). δ : no statistics computed because bacterial prevalence was a constant.

Appendix Table 2. Demographic characteristics of the study population

	CPP-ACP Group	All-in-One Group	Control Group	<i>P</i> -values
Mean Age ± S.D	14.33 ± 1.64	14.0 ± 1.55	14.03 ± 1.79	0.70
Female, n(%)	19(63%)	16(53%)	19(63%)	0.46

Appendix Table 3. Relative abundance of each *caries-associated* bacterial species at the baseline and recall visits, and the subsequent fold change in bacterial load over time

	ΔCt Baseline Visit			ΔCt Recall Visit			ΔΔCt			Fold change		
Bacterial Species	CPP-ACP	All-in-One	Control	CPP-ACP	All-in-One	Control	CPP-ACP	All-in-One	Control	CPP-ACP	All-in-One	Control
Veillonella parvula	-9.75	-9.50	-8.32	-8.06	-6.37	-8.46	1.68	3.13	-0.14	0.31	0.11	1.10
Streptococcus mutans	3.51	1.85	2.55	4.45	3.99	1.23	0.94	2.14	-1.33	0.52	0.23	2.51
Actinomyces gerensceriae	-4.33	-5.56	-4.60	-2.75	-4.46	-4.36	1.58	1.10	0.24	0.33	0.47	0.85
Streptococcus parasanguinis	9.55	9.27	7.97	10.40	10.59	9.42	0.85	1.32	1.45	0.56	0.40	0.37
Streptococcus sobrinus	9.55	9.86	9.44	10.26	10.59	9.92	0.71	0.73	0.48	0.61	0.60	0.72
Scardovia wiggsiae	5.37	4.94	5.09	6.18	4.92	4.49	0.81	-0.01	-0.60	0.57	1.01	1.52
Lactobacillus gasseri	9.01	8.63	9.13	9.10	9.04	9.21	0.09	0.41	0.08	0.94	0.75	0.95
Provotella denticola	-0.32	0.72	1.28	-1.45	-0.19	-0.96	-1.12	-0.92	-2.25	2.18	1.89	4.74

The Ct value of each bacterial target was normalized to the mean Ct value of all bacterial species (Δ Ct = Ct^{bacterial species}). The Δ DCt for each bacterial species was then calculated as follows: Δ DCt = Δ Ct^{bacterial species} (recall visit) – Δ Ct^{bacterial species} (baseline visit). Fold increase, or decrease, in bacterial abundance from the baseline to recall visit for each trial group was calculated based on the formula: $2^{-\Delta$ DCt}. Ratio below 1 indicates lower relative abundance; a ratio above 1 indicates higher relative abundance.

Appendix Table 4. Relative abundance of each *health-associated* bacterial species at the baseline and recall visits, and the subsequent fold change in bacterial load over time

	ΔCt Baseline Visit			ΔCt Recall Visit			ΔΔCt			Fold change		
Bacterial Species	CPP-ACP	All-in-One	Control	CPP-ACP	All-in-One	Control	CPP-ACP	All-in-One	Control	CPP-ACP	All-in-One	Control
Corynebacterium durum	0.77	-0.81	-0.86	-3.09	-3.43	-1.80	-3.85	-2.61	-0.94	14.45	6.11	1.92
Neisseria flavescens	-0.06	1.14	1.58	-1.09	-2.48	2.23	-1.03	-3.62	0.65	2.05	12.27	0.64
Streptococcus sanguinis	-7.92	-7.27	-8.31	-9.47	-9.05	-7.19	-1.55	-1.78	1.12	2.92	3.44	0.46
Streptococcus mitis/oralis	-6.60	-6.13	-6.64	-6.34	-6.11	-6.03	0.26	0.02	0.62	0.84	0.98	0.65
Rothia aeria/dentocariosa	-5.63	-4.39	-6.00	-5.59	-5.12	-5.10	0.04	-0.73	0.89	0.97	1.65	0.54
Streptococcus salivarius/ thermophilus	-3.14	-2.74	-2.31	-2.56	-1.93	-2.59	0.59	0.81	-0.27	0.67	0.57	1.21

The Ct value of each bacterial target was normalized to the mean Ct value of all bacterial species (Δ Ct = Ct^{bacterial species} – Ct^{mean of all bacterial species}). The $\Delta\Delta$ Ct for each bacterial species was then calculated as follows: $\Delta\Delta$ Ct = Δ Ct^{bacterial species (recall visit)} – Δ Ct^{bacterial species (baseline visit)}. Fold increase, or decrease, in bacterial abundance from the baseline to recall visit for each trial group was calculated based on the formula: $2^{-\Delta\Delta$ Ct}. Ratio below 1 indicates lower relative abundance; a ratio above 1 indicates higher relative abundance.