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Appendix 

Cost-effectiveness of the alternative uses of polyvalent meningococcal vaccines in 

Niger: an agent-based transmission modeling study 

S1 Additional Details on the Agent-Based Simulation Model  

Agents in our agent-based model (ABM) for meningococcal epidemics represent individual population members. 

An agent’s attributes include id, age (in weeks: 0, 1, …, 52000, where 52000 is the theoretical maximum), age 

group (<1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 

75-79, 80-84, 85-89, 90-94, 95-99, 100+ years old), district, current health state (Susceptible, Carrier, Meningitis, 

Immune), and various timer variables which track the time until the next scheduled event (e.g. death or infection) 

will occur. An agent’s vaccination status is also recorded: vaccinated or not, and if vaccinated, then the vaccine 

name (MenAfriVacTM, PMP, or PMC) and the vaccination program code (routine, reactive, or preventive). 

A simplified class diagram of the model architecture in the ABM is shown in Figure S1. The Model class1 is used 

to specify the simulation’s seed, the random data generator object, the current time step counter, the districts, and 

the vaccination campaign (optional). It also contains all AgeGroup classes, each of which in turn contains a list of 

Agent classes (for agents which fall under that age group). Each Agent class contains agent’s attributes including 

id, age (in weeks), district, current health state, vaccination status, etc. Each District class contains its dynamic 

population data (e.g. total number of infected people and total number of people) and dynamic transmission data 

(e.g. force of infection and mean time of infection), which are re-calculated during each week. 

                                                      
1 Technically, we mean “an instance of a class” when we refer to “a class”. 
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Figure S1: A simplified class diagram of the model architecture in the ABM. For simplicity, attributes and 

methods of most classes are omitted. We use the terms model and simulation interchangeably. 

Random Number Generators 

Our ABM utilizes the Apache Commons Math random package [63] to generate stochastic distributions and 

epidemic trajectories. To obtain a specific trajectory, we first specify the seed of the simulation’s the random 

number generator (RNG) object and the simulator will then use the RNG object to generate a unique stream of 

random numbers which will be used to both draw a sample for epidemic parameters and to generate the simulated 

trajectory. This approach will enable us to regenerate any desired trajectory by providing the corresponding RNG 

seeds. Since the calibration procedure is sensitive to the simulation’s seed, which in turn affects the RNG object, 

we use a second RNG object for the vaccination scenarios to generate a separate stream of random numbers.  

Model Initialization and Execution 

The model is initialized with populations of Niger districts in year 2002. For all districts, initial populations are 

created, and their ages are set using random samples from the distributions of Niger’s age-structure (stratified into 

the 22 age groups, see Table S1). Newly born individuals are assigned to a district randomly according to 

probability weights proportional to the district populations in 2016 [64]. The simulation time-step is set to 1 week. 
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Each simulation includes a 1-year warm-up period, and is run for either 13.5 or 28 years for purposes of 

calibration and evaluating vaccination scenarios, respectively.  

S2 Niger: Study Area and Demography 

The estimated population of Niger is 18,638,600 (July 2016 est.) with 44.8 births/1,000 population in 2016 [64]. 

Niger is divided into eight administrative regions and 44 districts The centroid and population of each district are 

shown in Figure S2, and the straight-line distances (in miles, calculated using the Haversine formula [65]) 

between districts are shown in Figure S3. The 2014 population data, obtained from the Niger Ministry of Health 

[66], are discounted at an annual growth rate of 3.22% (2016 est.) to 2002 [64]. The district-level spatial 

disaggregation enables us to model reactive vaccination campaigns that are triggered for each district once it 

passes the WHO epidemic threshold of 10 per 100,000 per week [4]. 

 

Figure S2: Study area depicting the centroids and populations of 44 districts of Niger. The 2002 population data, 

obtained from the Niger Ministry of Health, are discounted at an annual growth rate of 3.22% (2016 est.) [64] from 

2014. 
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Figure S3: Distance matrix for all districts of Niger. Distances (in miles) between districts are calculated using the 

Haversine formula [65] and the coordinates of districts by Python. 

Our model includes 22 age groups (<1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 

55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90-94, 95-99, 100+ years old) to allow for age-specific mixing 

patterns and to permit age-specific targeting of vaccinations. We use Niger’s population life tables [67] to 

estimate the proportion of the population into these age groups. The age-stratified mortality rates are also 

informed by population data (Table S1) [64]. 
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Table S1: Niger demography [65, 67]. 

Index Age Group Age Distribution (%) Annual Mortality Rate 

1 <1 0.02789 0.0595 

2 1-4 0.16732 0.0105 

3 5-9 0.16509 0.002 

4 10-14 0.13274 0.001 

5 15-19 0.10262 0.002 

6 20-24 0.07697 0.003 

7 25-29 0.0647 0.003 

8 30-34 0.05466 0.003 

9 35-39 0.04573 0.004 

10 40-44 0.03904 0.005 

11 45-49 0.03123 0.0065 

12 50-54 0.02454 0.0095 

13 55-59 0.02008 0.0135 

14 60-64 0.0145 0.021 

15 65-69 0.01115 0.034 

16 70-74 0.00892 0.0585 

17 75-79 0.00558 0.1005 

18 80-84 0.00279 0.169 

19 85-89 0.00112 0.27 

20 90-94 0.00112 0.4005 

21 95-99 0.00112 0.517 

22 100+ 0.00112 0.647 

S3 Natural History and Transmission Dynamics 

The prior distributions of natural history, transmission dynamics, and seasonality parameters are described in T9-

12. Adopting the notation of [33], we calculate the force of infection at time t for susceptible members in age 

group i of district k as: 

 𝐹𝑘,𝑖(𝑡) = 𝛽𝑘,𝑖(𝑡) ∑ 𝜆(𝑘,𝑖)←(𝑘′,𝑖′) (𝑘′,𝑖′)

𝐼
(𝑘′,𝑖′)

(𝑡)

𝑁(𝑘′,𝑖′)(𝑡)
 (1) 

where 𝛽𝑘,𝑖(𝑡) is the transmission parameter for district k and age group i, and 𝑁(𝑘,𝑖)(𝑡) and 𝐼(𝑘,𝑖)(𝑡) denotes, 

respectively, the population size of district k and the number of infectious members in district 𝑘 that belong to age 

group i. We let 𝛽𝑘,𝑖(𝑡) = 𝑑𝑘𝛽𝑖(𝑡), where 𝑑𝑘 is the proportion of N. meningitidis cases in Niger between 2002-

2016 (obtained from the anonymized individual-level dataset provided by the Ministry of Health, Niger) that was 

observed in district 𝑘. As demonstrated by previous studies, regional climate variability impacts meningitis 

activities with epidemics occurring in the dry season and receding with the onset of the rainy season [68, 69]. To 

capture the effect of seasonal changes on meningitis epidemics, we allow the transmission parameter 𝛽𝑖(𝑡) in Eq. 

(2) to vary over time according to: 
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 𝛽𝑖(𝑡) = {
𝛾𝑖,1(𝑎0 + 𝑎1,𝑞 cos 2𝜋(𝑡 + 𝑎2)),     if 𝑞 ≤ 𝑡 ≤ (2𝑞 + 1)/2,

𝛾𝑖,1𝑎0,                                                   otherwise.                      
 (2) 

In Eq. (2), the integer 𝑞 denotes the year number of time 𝑡, and the condition 𝑞 ≤ 𝑡 ≤ (2𝑞 + 1)/2 implies that 

this seasonality effect is present only during the first half of each year. This is consistent with historical data that 

show meningitis epidemics occur in dry seasons and disappear with the onset of rainy seasons that last 

approximately 4 months from May/June to September (Figure 2). Parameter 𝑠0 in Eq. (2) is the baseline 

transmissibility which is not influenced by the seasonality effect, and the parameter s1,q represents the maximum 

magnitude of seasonality effect during year 𝑞. To account for between-year variation in transmission due to other 

external causes, we allow 𝑠1,𝑞 to be randomly drawn from a uniform probability distribution. We found that this 

approach, which has been previously employed in other models [33, 39], is important for the generation of 

epidemics with the ranges of magnitudes observed in historical data (Figure 2). The phase parameter 𝑠2 is also 

included to provide additional flexibility in the modeling of the seasonality effect. We chose 𝑠0 = 0 and 𝑠2 =

−0.25 which result in a seasonality effect that gradually increases from January, peaks around May and 

diminishes by September. 

Meningitis incidence and carriage prevalence vary across age groups and districts [70-73]. Hence, we also allow 

the transmission parameter to be age- and district- dependent: in Eq. (2), parameter 𝛾𝑖,1 in βi(t) denotes the 

relative force of infection in age group i with respect age group (“< 1”) in the absence of seasonality (𝛾1,1 = 1), 

and in Eq. (1), parameter 𝑑𝑘 in 𝛽𝑘,𝑖(𝑡) denotes the district-level transmission coefficient for district k.  

Individuals who get infected move to the health state Carrier and are assumed to be protected against 

superinfection. While in this health state, an agent who belong to age group 𝑖 may progress to the invasive disease 

at the rate 𝑚𝑖(𝑡Inf) = 𝑎𝑖𝑒−𝑡Inf, where 𝑎𝑖 > 0 is determined through calibration, and 𝑡Inf is the time elapsed since 

infection. We assume that meningitis lasts for a week and its mortality is 10%  (𝜅 = 0.1) (see Table S3).  

Individuals transition to the Immune state upon losing their carriage status or recovering from meningitis. Based 

on how they acquired their immunity (losing carriage or recovering from meningitis), the duration of stay in this 

state is set as follows. If an individual did not have meningitis, the duration is sampled from a probability 

distribution that is characterized through calibration (Table S3). Otherwise (i.e. if it had meningitis), it is sampled 

from the same distribution and multiplied by a ratio (of time until losing immunity from disease to time until 

losing immunity from carriage), which is sampled from a ratio distribution of that is characterized through 

calibration (Table S3). 

S4 A Gravity Model to Estimate Age-Specific Contact Rates Within and Between 

Districts  

For Niger, population-based survey data of epidemiologically relevant social contact patterns (such as the 

POLYMOD dataset [74] which provides social contact matrices for eight different European countries) do not 
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exist. Hence, to model the contact patterns between individuals in different age groups residing in different 

districts of Niger, we use age-structured contact matrices projected from a recent Bayesian hierarchical study [75] 

which described the age-specific mixing pattern of individuals in 152 countries, including Niger. The contact 

matrix [𝜆̅𝑖,𝑖′], extended from 15 to 22 age groups for the ABM, is shown in Figure S4. Adopting the notation of 

[33], we let 𝑑𝑘,𝑘′ denote the distance between districts 𝑘 and 𝑘′, and 𝑛𝑘 denote the population of district k. We 

use 𝜆(𝑘,𝑗)←(𝑘′,𝑗′) to denote the daily rate at which an average individual in age group 𝑖 of district 𝑘 contacts with 

individuals in age group 𝑖′ of district 𝑘′. Assuming that during each day an individual in age group 𝑖 contacts on 

average with λ̅i,i′ individuals in age group i′, we estimate 𝜆(𝑘,𝑗)←(𝑘′,𝑗′) by: 

 𝜆(𝑘,𝑗)←(𝑘′,𝑗′) = 𝜆̅𝑖,𝑖′

𝑓(𝑑
𝑘,𝑘′)

𝑛𝑘
𝑛

𝑘′

∑ 𝑓(𝑑𝑘,𝑘′)
𝑛𝑘

𝑛
𝑘′𝑘′

,  (3) 

where 𝑓 is a monotonically decreasing function. Here, we use 𝑓(𝑑) = 𝑒−0.003𝑑, informed by a previous study 

[33]. Eq. (3) holds the assumption that the number of contacts between two districts (𝑘, 𝑘′) is proportional to the 

multiple of some distance weight function (i.e. 𝑓(𝑑𝑘,𝑘′)) and the relative size of the districts (i.e. 
𝑛𝑘

𝑛𝑘′
). We employ 

the Haversine formula [65] and the coordinates of districts to approximate distance between districts (i.e. 𝑑𝑘,𝑘′). 
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Figure S4: Average daily number of contacts among different age groups calculated from a recent Bayesian 

hierarchical study which described the age-specific mixing pattern of individuals for Niger [75]. The original contact 

matrix is extended from 15 to 22 age groups for the ABM. 

S5 Data Sources to Inform Calibration Targets 

We use an anonymized individual-level dataset of reported meningitis cases in Niger between 2002 to mid-2015 

(provided by the Ministry of Health, Niger) to prepare our data sources against which we calibrate the model (i.e. 

the weekly number of Neisseria meningitis cases, within Niger districts, associated to A and non-A serogroups, 

and the age-distribution of cases). The dataset contains sample date, district, age, and the conclusion made for 

29,349 clinical cases. Conclusions could be negative, N. meningitidis serogroup A, C, W and X, Streptococcus 

pneumoniae and Haemophilus influenzae type b, and is made using different methods such as polymerase chain 

reaction (PCR), microorganism conclusion, aspect macro LCR, resultat gram, Latex test, and culture. We applied 

a simple extrapolation method to determine the value of missing date and age as described below).  



 9 

Missing dates 

For patients where the date of final diagnosis is missing, we first look at the sample date column. If it is missing, 

we successively look at the date of reception, then the date of the first appearance of disease, and then the date of 

the patient’s consultation – whichever is present and comes first in the order. The ranges of dates for all 29,349 

records are 2/12/02 - 6/29/15. 

Missing patient’s age 

A total of 3721 records have both age in years and in months missing. We use empirical distributions of the age 

group-distribution of each epidemic season to assign an age group to cases with missing age. This is performed as 

follows. From the original 29,349 records, we aggregate the records by year, and calculate the age-distribution of 

cases for each year. We then used these empirical distributions to determine the age of patients with missing 

values. The 3721 patient records with missing age values are classified into the five age groups as 175 (“<1”), 

1073 (“1–4”), 1812 (“5–14”), 458 (“15–29”), and 203 (“30+”). 

 

 

Figure S5: Percentage of confirmed meningitis cases that are associated to N. meningitidis serogroup A, N. 

meningitidis non-A serogroups (including C, W, and X), and other pathogens (including Streptococcus pneumoniae 

and Haemophilus influenzae type b) in Niger from 2002 to mid-2015. 
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Figure S6: Percentage of reported meningitis cases in epidemic districts of Niger from 2002 to mid-2015 with 

“Neisseria meningitidis”, “Non-Neisseria meningitidis,” or “Negative” as final conclusion. This figure demonstrates the 

potential level of underreporting of meningococcal cases in the dataset used for calibrating our transmission model as 

most meningitis cases (>79%) in epidemic years 2006-8 were caused by N. meningitidis [18]. 

Estimating Age-Specific Carriage Prevalence  

For the complete strain replacement scenario, we obtained the estimates for age-specific meningococcal carriage 

prevalence (CPCSR,i for age group i ∈ {1,2, … , }) from a carriage survey study conducted in the African meningitis 

belt (Table S2) [19]. For the no strain replacement scenario, we estimated the age-specific carriage prevalence 

using the following approach. For age group i, we define:  

ratioi =
number of cases due to N.  serogroup A in age group i

number of cases due to all N.  serogroups in age group i
 

The carriage prevalence for age group i for the no strain replacement scenario is then estimated as (Table S2): 

CPNSR,i = ratioi  ×  CPCSR,i. 

 

Table S2: Age-specific cases and carriage prevalence used for calibrating the model under 

two strain-replacement scenarios 

 Complete Strain Replacement No Strain Replacement 

Age Group Cases Carriage Prevalence 

(%) 

Cases Carriage Prevalence 

(%) 

<1 371 1.8 296 1.44 

1-4 2388 2.6 1689 1.84 

5-14 5087 4.9 3208 3.09 

15-29 1159 3.6 817 2.54 

30+ 299 2.6 229 1.99 
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S6 Estimating Clinical Meningitis Cases 

Reactive vaccination campaigns are launched in districts where the weekly number of clinical meningitis cases 

(which include cases due to all N. meningitidis serogroups, and other cases due to e.g. H. influenzae types b and 

non-b, S. pneumonia) passes the WHO epidemic threshold of 10 per 100,000 per week [4]. We therefore use the 

following approach to construct the clinical meningitis time-series based on the weekly meningococcal incidence 

produced by our model. These constructed district-level meningitis time-series are then used to decide if reactive 

campaigns should be triggered throughout a simulation run.  

Let  

- yCSR(t, k) denote the number of meningococcal cases per 100,000 population, caused by all N. 

meningitidis serogroups, observed in district k over week t, 

- yNSR(t, k) denote the number of meningococcal cases per 100,000 population, caused by all N. 

meningitidis serogroups except serogroup A, observed in district k over week t, and 

- yOthers(t, k) denote the number of clinical meningitis cases per 100,000 population that are confirmed 

negative or associated to non- N. meningitidis serogroups (e.g. H. influenzae types b and non-b, S. 

pneumonia), observed in district k over week t. 

Our goal is to find a regression model M(⋅) that returns an estimate for yOthers(t, k) if y̌CSR(t, k) and y̌NSR(t, k) 

are what our simulation model produces for the number of meningococcal cases per 100,000 population in district 

k during week t, for complete strain replacement and no strain replacement scenarios. Fitting a 3rd degree 

polynomial (least squares polynomial fit) function of week t and the number of meningococcal cases (yCSR(t, k) 

or yNSR(t, k) depending on the strain replacement scenario) to yOthers(t, k), we characterized the regression 

model M(⋅) for the complete strain replacement scenario as:  

y̌Others,CSR(t, k) = −5.33357444 e−04 × ŷCSR(t, k)3 + 8.96344860e−02 × ŷCSR(t, k)2

+ 1.08069657 × ŷCSR(t, k) + 7.85514925e−02, 

and for the no strain replacement scenario as: 

y̌Others,NSR(t, k)

= −5.96859698 e−04 × ŷNSR(t, k)3 + 8.52547129e−02 × ŷNSR(t, k)2

+ 1.41036290 × ŷNSR(t, k) + 9.57915532e−02. 

Figure S7 shows that these regression models fit the outcomes (i.e.  yOthers(t, k)) properly. Using these regression 

models, we can now determine the number of clinical meningitis cases per 100,000 population in district k over 

the simulation week t by:  

y̌Others,CSR(t, k) + y̌CSR(t, k), 

for the complete strain replacement scenario and 
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y̌Others,NSR(t, k) + y̌NSR(t, k), 

for the no strain replacement scenario. A reactive campaign is launched in district k if the clinical incidence 

passes the WHO epidemic threshold. 

 

Figure S7: Estimating “other” (Non-N. meningitidis and negative) cases using non-linear regression. A) Complete 

strain replacement scenario. B) No strain replacement scenario. 

S7 Model Calibration 

Our calibration approach is adopted from [33] and extended for the ABM developed here. For each strain 

replacement scenario, we measure the fit of a simulated trajectory with respect to the average and periodicity in 

the weekly number of meningococcal cases, age-distribution of meningococcal cases, and average prevalence of 

meningococcal carriage in age groups. To build a set of trajectories to evaluate the performance of vaccination 

strategies in Table 3, we first simulate 100,000 epidemic trajectories (for each scenario), each of which uses 

parameter values that are randomly drawn from the prior probability distributions listed in Table S3-Table S5. 

These prior distributions are mainly informed by estimates extracted from existing scientific literature. When such 

estimates are not available, we identified prior distributions by experimenting with the model (“hand-fitting”) to 

ensure the model can produce simulated trajectories that are consistent with past observations. Then, we eliminate 

trajectories that eventually “die-out” (e.g., have zero meningitis cases in one or more years of the last 5 years), 

and select the best-fitting 200 epidemic trajectories for evaluating control policies.  

We use the approach described below to approximate the likelihood of observations given a simulated trajectory. 

In this approach, to obtain one simulated epidemic trajectory, we first specify the seed of the simulation’s random 

number generator (RNG) object. The simulator will then use the RNG object to generate a unique stream of 

random numbers which will be used to both draw a sample for epidemic parameters and to generate one simulated 

trajectory. This approach will enable us to regenerate any desired trajectory by providing the corresponding RNG 

seeds. In the following, we use 𝑖 ∈ {1,2, … ,5} to denote the age groups {<1, 1-4, 5-14, 15-29, 30+} and 𝑘 ∈
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{1, 2, … , 44} to denote districts of Niger. Our chosen pseudolikelihood function consists of 4 components as 

explained below: 

Component 1. Likelihood of age-distribution of cases 

Let 𝜏̂𝑖 denote the number of meningococcal cases in age group 𝑖 ∈ {1,2, … ,5} observed between 2002 and mid-

2015. For the scenario with strain replacement, (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝜏̂5) = (371, 2388, 5087, 1159, 299), and for the 

scenario without strain replacement, (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝜏̂5) = (296, 1689, 3208, 817, 229) (see Table S2). We assume 

that (𝜏̂1, 𝜏̂2, 𝜏̂3, 𝜏̂4, 𝜏̂5) follows a multinomial distribution with ∑ 𝜏̂𝑖
5
𝑖=1 = 9304 or 6239 trials (for with and 

without strain-replacement scenarios) and success probabilities (𝜏𝑧,1, 𝜏𝑧,2, 𝜏𝑧,3, 𝜏𝑧,4, 𝜏𝑧,5), where 𝜏𝑧,𝑖 is the 

percentage of meningococcal cases that belong to age group 𝑖 in a simulated trajectory for which RNG seed 𝑧 is 

used. 

Component 2. Likelihood of average carriage prevalence 

Let 𝑆̂𝑖 and 𝑠̂𝑖 be, respectively, number of participants and number of confirmed as meningococcal in age group 𝑖 ∈

{1,2, … ,5} during the 2009-2012 meningococcal carriage survey study in the African meningitis belt [73]. We 

assume that 𝑠̂𝑖 follows a binomial distribution with 𝑆̂𝑖 trials and success probability 𝜌𝑧,𝑖, where 𝜌𝑧,𝑖 is the average 

prevalence of meningococcal carriage in age group 𝑖 in a simulated trajectory for which RNG seed 𝑧 is used, and  

(𝑆̂1, 𝑆̂2, 𝑆̂3, 𝑆̂4, 𝑆̂5) = (2199, 8839, 13121, 12425, 11906) [73]. For the scenario with strain replacement, we set 

(𝑠̂1, 𝑠̂2, 𝑠̂3, 𝑠̂4, 𝑠̂5) = (41, 228, 655, 450, 313), and for the scenario without strain replacement we set 

(𝑠̂1, 𝑠̂2, 𝑠̂3, 𝑠̂4, 𝑠̂5) = (32, 163, 405, 316, 237), which is calculated by multiplying the estimated carriage 

prevalence under no strain replacement scenario (column 5 in Table S2) by the number of survey participants in 

each age group, i.e. (𝑆̂1, 𝑆̂2, 𝑆̂3, 𝑆̂4, 𝑆̂5) = (2199, 8839, 13121, 12425, 11906).   

Component 3. Likelihood of average weekly meningitis incidence 

Let 𝑦̂𝑡 denote the meningitis cases observed during week 𝑡 ∈ {1,2, … , 𝑇}, where 𝑇 = 702 denotes the total 

number of weeks in 2002 to mid-2015. We assume that the mean of observed weekly meningitis cases, i.e. 𝜇𝑌̂ =

∑ 𝑦̂𝑡
𝑇
𝑡=1 /𝑇,  follows a normal distribution with mean of 𝜇𝑌𝑧

 and standard deviation of 𝜎𝑌𝑧
, where 𝜇𝑌𝑧

 and 𝜎𝑌𝑧
 are, 

respectively, the mean and standard deviation of weekly meningitis cases in a simulated trajectory for which RNG 

seed 𝑧 is used.  

Component 4. Likelihood of periodicity in past meningitis epidemics 

As described in a greater detail in §S8, to identify the significant periods at which past meningitis epidemics had 

occurred in Niger, we used the discrete Fourier transform. Let ℱ̂  be the vector of Fourier amplitudes for the 

observed meningitis incidence time-series 𝑌̂ = (𝑦̂1, 𝑦̂2, . . . , 𝑦̂𝑇) (see §S8 for details on how ℱ̂ can be calculated 

and  Figure S12 for an example). Let ℱ𝑧 be the vector of Fourier amplitude for the time-series 𝑌𝑧 =

(𝑦𝑧,1, 𝑦𝑧,2, … , 𝑦𝑧,𝑇), the weekly meningitis cases during a simulated trajectory for which RNG seed 𝑧 is used. We 

measure the likelihood of the observed ℱ̂ given ℱ𝑧 as the product of the likelihood of the angle between vectors 

ℱ̂ and ℱ𝑧 and the and the likelihood of the magnitude of vector ℱ̂  (denoted by ‖ℱ̂ ‖) given ℱ𝑧:  
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1. The angle between vectors ℱ̂ and ℱ𝑧 is calculated as: 𝜃𝑧 = acos(
ℱ𝑧ℱ̂ 

‖ℱ𝑧‖.‖ℱ̂ ‖
). Angle 0 implies a perfect 

match between the significant periods of two time-series, and hence we assume that 𝜃𝑧 follows a 

truncated normal with minimum 0 and standard division 𝜎𝜃̂𝑧
. We set 𝜃𝑧 = 5.1 which results in a truncated 

normal distribution with 95% of the distribution below 10 degrees.  

2. The magnitude of vector ℱ̂ , i.e. ‖ℱ̂ ‖, is always a positive number and hence, we choose a normal 

distribution with mean ‖ℱ𝑧‖ and standard deviation of 0.1‖ℱ𝑧‖, truncated to be bounded from below at 0, 

to represent the likelihood of ‖ℱ̂ ‖ given ℱ𝑧.  

Total pseudolikelihood  

To summarize, we calculate the natural logarithm of the likelihood of observations given a simulated trajectory 

as: 

ln ℒ(Τ̂; Τz) +
1

5
∑ ln ℒ(𝑠̂𝑖; 𝑆̂𝑖, 𝜌𝑧,𝑖)

5

𝑘=1

+ ln ℒ(𝜇𝑌̂; 𝜇𝑌𝑧
, 𝜎𝑌𝑧

) + ln ℒ(ℱ̂; ℱ𝑧) , (1) 

where ℒ(Τ̂; Τz) is the pseudolikelihood of age-distribution of cases (Component 1 as explained above), 

ℒ(𝑠̂𝑖; 𝑆̂𝑖, 𝜌𝑧,𝑖) is the pseudolikelihood of carriage prevalence in age group 𝑖 (Component 2), ℒ(𝜇𝑌̂; 𝜇𝑌𝑧
, 𝜎𝑌𝑧

) is the 

pseudolikelihood of average weekly incidence (Component 3), and ℒ(ℱ̂; ℱ𝑧) is the pseudolikelihood of 

periodicity of epidemics (Component 4).   

We note that Eq. (1) provides an approximation to the true likelihood function which could not be calculated for 

our model due to the sparsity of data and unobservable compartments. Also, Eq. (1) assumes that the four 

components of the pseudolikelihood function are independent, and assumption that is necessitated by lack of data 

to characterize the correlation between these four components (for example, while a non-zero correlation between 

incidence and carriage time-series is expected, time-series data needed to estimate this correlation are not 

available).  

Model Projections 

The calibration period spans from 2002 to mid-2015 (13.5 years, see Figure 2). However, PMC vaccine induces 

longer-term immunity, and hence a full evaluation of the performance of vaccination strategies requires us to run 

the model beyond the calibration period. For this extended period, we assume that all model parameters 

determined through calibration remain the same beyond 2016, except for the external force of infection 

(represented by 𝑠1,𝑞), which repeats every 14 years (Table S6). 
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Table S3: Prior distributions of natural history parameters. 

Parameter Distribution/Value Lower Bound Upper Bound Sources 

Time until losing carriage in Carrier state* Uniform 1 week 27 weeks [76] 

Time until losing immunity from carriage in 

Immune state* 

Uniform 4 weeks 260 weeks [77-79] 

Ratio of time until losing immunity from 

disease to time until losing immunity from 

carriage (in Immune state)* 

Uniform 1 20 [41, 77, 79] 

Rate of progression ai to invasive disease 

for age group <1 y 

Uniform 0 0.00075 Experiments with 

the model and [33] 

Ratio of rate of progression to invasive 

disease with respect to age group <1 y 

 Experiments with 

the model and [33] 

Age group 1-4 y Uniform 1.35 1.65  

Age group 5-14 y Uniform 1.35 1.65  

Age group 15-29 y Uniform 0.675 0.825  

Age groups 30-100+ y Uniform 0.225 0.275  

Duration of disease** 1 week - - [29] 

Disease-associated mortality κ** 10% - - [80] 

Parameters marked with * are sampled for each individual in a simulation. All other parameters are sampled once per 

simulation. 

Parameters marked with ** use fixed values as mentioned in the 2nd column. 
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Table S4: Prior distributions of transmission parameters. 

Parameter Distribution/Value Lower Bound Upper Bound Sources 

Transmission 

parameter for age 

group <1 y* 

1 - - Experiments with the 

model and [33] 

Relative force of 

infection with respect 

to age group <1 y 

   Experiments with the 

model and [33] 

Age group 1-4 y Uniform 0.08 0.12 

Age group 5-14 y Uniform 0.175 0.225 

Age group 15-29 y Uniform 0.025 0.035 

Age groups 30-100+ 

y 

Uniform 0.025 0.035 

Distance parameter 

φ* 

Uniform 0.03 0.03001 Experiments with the 

model and [33] 

Parameters marked with * use fixed values as mentioned in the 2nd column. 

All parameters are sampled once per simulation. 

 

 

Table S5: Prior distributions of population structure on the first simulation year (% of population in states). 

Parameter Distribution Lower Bound Upper Bound Sources 

Carrier state Uniform 0.01 0.12 Experiments with the 

model and [33] 

Immune state Uniform 0.01 0.85 Experiments with the 

model and [33] 

All parameters use fixed values as mentioned in the 2nd column, and are sampled once per simulation. 
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Table S6: Prior distributions of seasonality parameters. 

Parameter Distribution Lower 

Bound 

Upper 

Bound 

Sources 

External annual variation s1,q for 

year q ∈ [1,2,3, … 14]  

Uniform 0 0.75 Experiments with 

the model and [33] 

Phase parameter s2* −0.25 - - Experiments with 

the model and [33] 

Parameters marked with * use fixed values as mentioned in the 2nd column. 

All parameters are sampled once per simulation. 

 

 

 

Figure S8: The proposed model matches the key characteristics of meningococcal epidemics in Niger between 2002 to 

mid-2015 for the no strain replacement scenario. A) Age-distribution of meningococcal meningitis cases in Niger 

versus the age-distribution of cases generated by the model. B) Estimated meningococcal carriage prevalence in 

different age groups from carriage survey studies in the African meningitis belt [19] versus the age-specific average 

carriage prevalence obtained from the model. C) Average of confirmed weekly meningococcal cases observed from 

2002 to mid-2015 versus those produced by the model. D) Cosine of the angle (𝜽) between the vectors of Fourier 

amplitude for observed and simulated meningitis time-series; cosine of 1 indicates total match in periodicity and 

cosine of 0 indicates no overlap between the significant periods of two time-series. 
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Figure S9: Number of years between 2002 to mid-2015 when the weekly meningitis clinical cases pass the WHO 

epidemic threshold in Niger’s districts produced by our model and observed in the data for the no strain replacement 

scenario. A) Complete strain replacement scenario. B) No strain replacement scenario. 

 

 

 

Figure S10: Average weekly N. meningitidis cases in Niger’s districts produced by our model and observed in the data 

for the no strain replacement scenario. 
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Figure S11: The mean and 95% prediction interval of the estimated annual DALY and cost for the strain-replacement 

scenario under the Base strategy. In these figures, means and prediction intervals are calculated using the 𝒏 best-fitting 

trajectories among 5𝟎𝟎𝒏 trajectories each of which uses parameter values that are randomly drawn from the prior probability 

distributions listed in Table S3-Table S5. This figure suggests that calibrating the model using more than 100,000 simulated 

trajectories is not expected improve the accuracy of estimated means and prediction intervals.  

S8 Characterizing Periodicity of Past Epidemics 

We use the Discrete Fourier transform (DFT) of weekly meningitis cases in Niger over 2002-2016 to identify the 

significant periods of past meningitis epidemics [33]. The Discrete Fourier transform of time-series 

(𝑓0, 𝑓1, … , 𝑓𝑛, … 𝑓𝑁−1) is defined as: 

𝐹𝑘 = ∑ 𝑓𝑛𝑒
−2𝜋𝑖𝑘𝑛

𝑁⁄

𝑁−1

𝑛=0

, 𝑘 ∈ {0,1, … , 𝑁 − 1}, 

where 𝑒
−2𝜋𝑖𝑘𝑛

𝑁⁄ = 𝑐𝑜𝑠 (2𝜋𝑘
𝑛

𝑁
) − 𝑖 𝑠𝑖𝑛 (2𝜋𝑘

𝑛

𝑁
) , 𝑘 ∈ {0,1, … , 𝑁 − 1}, represent N Fourier bases with 

corresponding periods 
𝑁

𝑘
𝑑𝑡 where dt is the time between two adjacent points in the time-series (in our case, 1 

week), and Fk represents projection of the time-series (𝑓0, 𝑓1, … , 𝑓𝑛, … 𝑓𝑁−1) onto the corresponding Fourier bases. 

Since the meningitis incidence time-series is real-valued, 𝐹𝑘 , 𝑘 ∈ [0,1, … , ⌊
𝑁

2
⌋] represents all the periodicity of the 

signal with F0 representing zero frequency (or simply the sum of the time-series) and 𝐹⌊𝑛/2⌋ representing 

maximum possible frequency (Note: ⌊𝑁/2⌋ = 𝑁/2 if N is an even number and ⌊𝑁/2⌋ = (𝑁 − 1)/2 if N is an odd 

number). For a comprehensive review of Fourier transform, refer to the tutorial by Duhamel and Vetterli [81]. 

|𝐹𝑘|2 is referred to as Fourier amplitude and we use 𝐹 = (|𝐹0|2, |𝐹1|2, … , |𝐹⌊𝑁/2⌋|
2 ) to denote the vector of 

Fourier amplitudes.  

To identify significant periods of a time-series (i.e. periods for which |𝐹𝑘|2 is statistically greater than zero), we 

generate 1,000 bootstrap resamples of the time-series by randomly shuffling the time-points of the original time-
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series [82]. This process removes the inherited periodicity in each resampled time-series. We next use DFT to 

calculate the Fourier weights |𝐹𝑘|2, 𝑘 ∈ [0,1, … , 𝑁 − 1], for each bootstrap resampled time-series. We consider 

the period that corresponds to the Fourier weight |𝐹𝑘|2 statistically significant, if |𝐹𝑘|2 calculated for the original 

time-series is greater than 99% of the |𝐹𝑘|2 calculated from the 1,000 bootstrap samples. Figure S12 displays the 

significant periods of weekly meningitis cases in Niger between 2002-2016 identified using the approach 

described above.   

 

Figure S12: Significant periods of weekly meningitis cases observed in Niger reported between 2002 to mid-2015 as 

displayed in Figure 2. A) Complete strain replacement scenario. B) No strain replacement scenario. 

 

As part of calibration, we also compared the age structure of the population of Niger [66] with that from sample 

simulations (example illustrated in Figure S13). 
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Figure S13: Comparing the 2016 age structure of Niger (A) with that produced by the simulation model in 

years 1 (B), 10 (C) and 20 (D). 

S9 Cost and DALY Calculation 

We use disability-adjusted life-years (DALY) to measure the health outcomes associated with alternative 

vaccination strategies. To measure the financial outcomes, we consider disease-related costs (such as case 

management cost and care cost for sequelae-experiencing patients) and vaccine costs of vaccination campaigns. 

The summary of cost parameters is provided in Table S7. All health and financial outcomes of alternative 

vaccination strategies are discounted at an annual rate of 3% to 2016. All costs are presented in the US dollars.  

In the absence of reliable cost data related to meningitis case management in Niger, we use US $50.73 (estimated 

in 2015 from a cost study in Burkina Faso [83]; $51.74 in 2016) as an estimate for the costs of meningitis case 

management. This estimate includes direct medical costs (e.g. drugs, consultations, laboratory analyses for case 

diagnosis), direct non-medical costs (e.g. transportation and food), and other indirect costs [33, 84]. In Burkina 

Faso, on average, 7.2% of those surviving a meningitis episode will experience major sequelae, and the concerned 
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household incur an additional cost of US $25.4-$154.4 for rehabilitation [84]; hence, we assume that short-term 

cost of sequelae follows a Uniform distribution of [$25.4-$154.4].  

We use vaccine delivery cost of $0.28 (estimated in 2010, $0.31 in 2016) per dose for routine vaccination 

programs that include service delivery, advocacy and communication, monitoring and disease surveillance, 

program management [83]. To calculate the total vaccine doses required for routine immunization, we assumed a 

wastage factor of 1.67 [83]. For both reactive and preventive vaccination campaigns, we assume that the vaccine 

delivery cost (which includes transportation, advocacy and communication, personnel, monitoring and disease 

surveillance, cold chain equipment, and program management) is US $0.43 (estimated in 2007, $0.51 in 2016) per 

person [85]. 

Vaccine and injection supplies are major contributors to recurring costs during reactive and preventive campaigns 

[85]. We assume $0.15 for injection supplies [86]. For vaccine costs, we assume $0.64 and $4 for MenAfriVacTM 

and PMP vaccine (per dose), respectively [87]. Since the PMC vaccine price is not yet determined, we vary this 

price from $4 to $10 per dose. 

Table S7: Cost parameters. 

Parameter Cost Sources 

Meningitis case 

management 

$51.74 

[83] 

Meningitis sequelae Uniform [$25.4 – $154.4] [84] 

MenAfriVacTM 

vaccine 

$0.64 per dose 

[87] 

PMP vaccine $4 per dose [87] 

PMC vaccine $4 – $10 per dose Price is not determined yet; varied between $4.0 and $10.0 in 

a sensitivity analysis [33] 

Injection supply $0.15 per vaccinated 

person [86] 

Vaccine delivery costs 

Routine programs $0.52 per vaccinated 

person 

The delivery cost is estimated $0.31 per dose for routine 

vaccination programs [83] and we used a wastage factor of 

1.67 [83] to estimate delivery cost per vaccinated person 

($0.31*1.67 = $0.52). 

Reactive campaigns  $0.51 per vaccinated 

person [85] 

Preventive campaigns $0.51 per vaccinated 

person [85] 
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S10 Sensitivity Analysis: Impact of PMC Vaccine Price on the Performance of 

Vaccination Strategies 

 

Figure S14: Economic evaluation of vaccination strategies described in Table 3 for the complete strain replacement 

scenario (A, C) and the no strain replacement scenario (B, D). The price of PMP and PMC vaccines are $4 and $10 

per dose, respectively. In figures C and D, the expected gain in net monetary benefit (NMB) of a strategy is calculated 

with respect to the Base strategy. The dashed line in these figures represents the cost-effectiveness threshold of three 

per capita gross domestic product of Niger which is estimated to be 3×359 USD in 2015 [45]. All costs and DALYs are 

discounted at rate 3% to year 2016.  
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