Figure 1. The evaluation system of monitoring risk for deep excavation.

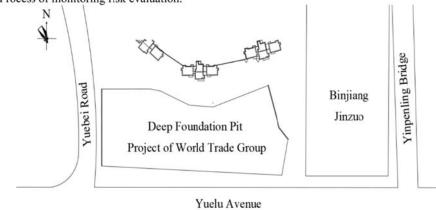


Figure 2. Process of monitoring risk evaluation.

Figure 3. Layout of deep foundation pit.

	Table 1	. Comparison	of the importance o	f evaluation indexes.
--	---------	--------------	---------------------	-----------------------

scale	Definition	Explanation
1	Equal importance	Two activities contribute equally to the objective
3	Weak importance of one over another	Experience and judgment slight favor one activity over another
5	Essential or strong importance	Experience and judgment strongly favor one activity over another
7	Demonstrated importance	An activity is strongly favored and its dominance is demonstrated in practice
9	Absolutely importance	The evidence favoring one activity over anther is of the highest possible order of affirmation
2, 4, 6, 8	Intermediate values between the two adjacent judgments	The importance is between two adjacent scales.
Inverse	In contrast to the above	

Table 2. Random indexes.²⁵

101	n indexes.20					
	order	RI	order	RI	order	RI
	1	0	6	1.25	11	1.52
	2	0	7	1.35	12	1.54
	3	0.52	8	1.40	13	1.56
	4	0.89	9	1.45	14	1.58
	5	1.11	10	1.49	15	1.59

Table 3. Weight of experts' comments.

Experts' comments (W _e)	Minimal	Very small	smaller	medium	larger	Very large	maximal
Risk probability (w_k)	0.1	0.2	0.4	0.5	0.6	0.8	0.9

 Table 4. Risk acceptance criteria.

Grade	Evaluation value ()	Acceptance degree	Suggestions or measures	Whether alarming
Level 1	0 ~ 0.2	Negligible	Daily inspection and monitoring	No
Level 2	0.2 ~ 0.4	Admissible but needing to pay little attention to	Strengthening daily inspection and management	No
Level 3	0.4 ~ 0.6	Acceptable but needing to pay much attention to	Needing prevention, analyzing the causes and strengthening monitoring	Yes
Level 4	0.6 ~ 0.8	Unsuitable to accept	Alarming for engineering and improving monitoring frequency	Yes
Level 5	0.8 ~ 1.0	Refusing to accept	Stopping construction and activating contingency plan immediately	Yes

Table 5. Judgment matrix of the weight of risk indexes.

Judgment index	u_{11}	u_{12}	<i>u</i> ₁₃	u_{14}	u ₁₅	u_{21}	<i>u</i> ₂₂	u_{23}	<i>u</i> ₃₁	<i>u</i> ₃₂	<i>u</i> ₃₃
<i>u</i> ₁₁	1	1/3	1/4	1/6	1/6	1/5	1/5	1/5	1/9	1/6	1/7
u_{12}	3	1	1/2	1/3	1/3	1/2	1/2	1/2	4	2	2
<i>u</i> ₁₃	4	2	1	1/3	1/3	1/2	1/2	1/2	3	2	2
u_{14}	6	3	3	1	1	1/2	1/2	1/2	2	1	1
u ₁₅	6	3	3	1	1	1/2	1/2	1/2	2	1	1
u_{21}	5	2	2	2	2	1	1	1	2	2	1
<i>u</i> ₂₂	5	2	2	2	2	1	1	1	2	2	1
<i>U</i> ₂₃	5	2	2	2	2	1	1	1	2	2	1/2
<i>u</i> ₃₁	9	1/4	1/3	1/2	1/2	1/2	1/2	1/2	1	1/2	1
<i>u</i> ₃₂	6	1/2	1/2	1	1	1/2	1/2	1/2	2	1	1
<i>u</i> ₃₃	7	1/2	1/2	1	1	1	1	2	1	1	1

References

- 1. Li Y, Geng SB, Zhang XS and Zhang H. Study of thermal comfort in underground construction based on field measurements and questionnaires in China. *Building and Environment* 2017; 116: 45-54.
- 2. You XH, He GY, Wang QX and Zhang L. Current status and development trend of urban underground space in China. *Tunnel Construction* 2019; 39(2): 173-188.
- 3. Simankina T, Braila N and Kanyukova S. Reclamation trend of underground construction. *Procedia Engineering* 2016; 165: 1757-1765.
- 4. Mitew-Czajewska M. A study of displacements of structures in the vicinity of deep excavation. Archives of Civil and Mechanical Engineering 2019; 19(2): 47-556.
- 5. Cao SJ, Deng HY, Zhou XQ and Deng YL. Ventilation inlets design based on ventilation performance assessment using a dimensionless time scale. *Indoor and Built Environment* 2018; 1420326X18815321.
- 6. Kaoula D and Bouchair A. Evaluation of environmental impacts of hotel buildings having different envelopes using a life cycle analysis approach. *Indoor and Built Environment* 2018; 27(4): 561-580.
- Li X, Liu X, Li CZ, Hu ZM, Shen QP and Huang ZY. Foundation pit displacement monitoring and prediction using least squares support vector machines based on multi-point measurement. *Structural Health Monitoring* 2018; 147592171876793.

8. Guly SA. The study of the ground freezing method using natural cold to protect the foundation pit from groundwater inflow. *Inzenerno - Stroitel'Nyj Zurnal* 2015; 3: 29-37,95-97.

9. Fearnhead N, Maniscalco K, Standing JR and Wan MSP. Deep excavations: monitoring mechanisms of ground displacement. *Proceedings of the Institution of Civil Engineers-Geotechnical Engineering* 2014; 167(2): 117-129.

- 10. Einstein HH and Mines US. Risk analysis for rock slopes in open pit mines. NTIS, 1981.
- 11. Einstein HH and Karam KS. Risk assessment and uncertainties. Essen: VGE, 2001; 457-488.
- 12. Duzgun H and Einstein HH. Assessment and management of roof fall risks in underground coal mines. Safety

science 2004; 42(1): 23-41.

- Wang YM, Li MF, Tan D, Liang XH and Xu Y. Research on deformation forewarning and safety supervision system for building excavation engineering in Nanjing area. *China Civil Engineering Journal* 2015; 48(S2): 143-147.
- 14. Xiong ZM, Lu H, Wang MY, Qian QH and Rong XL. Research progress on safety risk management for large scale geotechnical engineering construction in China. *Rock and Soil Mechanics* 2018; 39(10): 3703-3716.
- 15. Liu B, Wang KQ and Huang M. Research on fuzzy hierarchical risk assessment of metro deep excavation pit. *Chinese Journal of Underground Space and Engineering* 2015; 11(S1): 257-264.
- 16. Du XL, Zhang XF, Zhang MJ and Hou BW. Risk synthetic assessment for deep pit construction based on evidence theory. *Chinese Journal of Geotechnical Engineering* 2014; 36(01): 155-161.
- 17. Zhang LM. Study on risk management of deep foundation pit monitoring project. PhD thesis, Tianjin University, 2012.
- 18. Li JJ, Wang WD, Di GE and Wu JB. Analysis of the influence of excavation engineering on additional deformation of adjacent buildings. *Rock and Soil Mechanics* 2007; 28(S1): 623-629.
- 19. GB 50497-2009, Technical Code for Monitoring of Building Excavation Engineering. Beijing: China Planning Press, 2009.
- 20. JGJ 120-2012. *Technical specification for retaining and protection of building foundation excavation*. Beijing: China Architecture & Building Press, 2012.
- 21. Zadeh LA, Fu KS, Tanaka K, Shimura M and Negoita CV. Fuzzy sets and their applications to cognitive and decision processes. *IEEE Transactions on Systems, Man and Cybernetics* 1977; 7:122-123.
- 22. Yan FF, Wei CP and Ge SN. Entropy measures for dual hesitant fuzzy sets and their application of multiattribute decision-making. *Mathematics in practice and theory* 2018; 48(17): 131-139.
- 23. Wang LF and Xu SB. *Introduction to the analytic hierarchy process*. Beijing: China Renmin University Press, 1990.
- 24. Saaty TL and Vargas LG. Estimating technological coefficients by the analytic hierarchy process. *Socio-Economic Planning Sciences* 1979; 13(6): 333-336.

25. Saaty TL and Tran LT. On the invalidity of fuzzifying numerical judgment in the analytic Hierarchy Process. *Mathematical and Computer Modelling* 2007; 46: 962-975.