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A Additional results on the proteomic data analy-

sis

In this Section, we present an additional set of results from the analysis of the three
subproteomic data. Section A.1 summarizes the distribution of the number of protein
isoforms across the three subproteomes: TCE, surface and nucleus. Second, in Section
A.2, we check the goodness of fit of the proposed approach. Finally, in Section A.3, we
illustrate an analysis of the complete dataset that also includes proteins with very low
abundance.

A.1 Distribution of protein isoforms

Table A.1 in this Web Appendix summarizes the number of proteins identified and
expressed across all the samples from a specific cell line. The TCE subproteome, which
includes proteins found in both the nucleus and at the cellular surface (as well as in the
cytoplasm), contains a larger number of proteins than the other subproteomes (TCE
had 5,842 proteins, of which 4,081 were identified in cell line TF1, 4,549 in cell line
u937, and 1,102 in cell line HL60). Fewer proteins (2,341 proteins) were identified in
the three subproteomes in cell line HL60.

Table A.1: Summary of the number of proteins identified in each cell line type and
subproteomic dataset.

TF1 u937 HL60 Total
TCE 4081 4549 1102 5824

Nuclear 1836 1633 1286 2470
Surface 1477 1114 1278 2147
Total 5123 5305 2341 6922
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A.2 Model checking on the proteomic data analysis

In this section, we perform model checking on the observed data. For that, we aim
to compare the posterior predictive protein expressions with the observed protein
expressions. We applied this procedure to the 9 observed data sets as described in
the paper. Here we focus on Objective 1, i.e., detection of groups of protein isoforms
based on the change in expression between sensitive and resistant samples at a specific
time point. After integrating out the cluster memberships ρjk, the posterior predictive
density of a new protein expression ynew

j can be calculated as:

1. for every experimental condition k = 1, ..., K, we predict the cluster of a pair
(j, k) as

P (ρjk = h|data) ∝ π̂hN (ynew
jk ;XT

k β̂h + µ̂h1nk
, σ̂2

hΣkh) (1)

2. Given ρjk = h, the distribution of ynew
jk should then follow a multivariate normal

N (XT
k β̂h + µ̂h1nk

, σ̂2
hΣkh) (2)

where

• β̂h, µ̂h, σ̂2
h are the posterior means of βh, µh, σ

2
h respectively.

• π̂h =
1

pK +
∑
αh

(αh +
1

N

N∑
l=1

p
(l)
h ) is the posterior mean of πh, and p

(l)
h is the

number of elements in cluster h for MCMC sample l, N is the total number of
MCMC iterations after burn-in.

We then performed a one-sample Kolmogorov-Smirnov test for testing whether the
observed gene expressions for each dataset follows the distribution (2). Box plots of
p-values (non-adjusted) of protein expressions are shown in Figure A.1. They show
large pvalues for the test for every dataset with median values ranging from 0.6 to
0.92. In addition, Table A.2 shows that minimum pvalues for each of the 9 dataset:
only dataset TCE with cell line TF1 has a minimum pvalue less than 0.05.

Table A.2: Minimum p-values for each dataset

Nuclear Surface TCE
HL60 0.108 0.126 0.082
TF1 0.053 0.054 0.011
u937 0.137 0.1714 0.099

A.3 Analysis of the complete dataset that includes low abundance
protein isoforms

In the main paper, we presented results on proteomic data after excluding protein
isoforms with abundance less than 5 in at least one sample, as these low-abundance
proteins often do not provide reproducible results. In this Section, we present some
results after including now isoforms with abundance less than 5 in only one condition (if
we have two conditions) or two conditions (if we have three conditions). Hence, some
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Figure A.1: Boxplot of pvalues obtained from the Kolmogorov Smirnov test
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of these isoforms would have low-abundance in some conditions and high-abundance in
other conditions. Results show that two proteins selected in this new analysis were also
selected in the analysis presented in the main manuscript (see Table A.3 and Table 5 in
the main manuscript). In Table A.3, boldface protein id names are common proteins
selected in both analysis, italic protein names are proteins that are only selected with
this new analysis.

B Combined likelihood and Full conditionals

Let yjk = (yjk1, yjk2, ..., yjknk
) be a vector in which each element yjki represents the

(log2-) expression of the feature (e.g., protein) j in sample i = 1, ..., nk of experimental
type k = 1, ..., K. In one of our applications (see Likelihood for Objective 2 in Section
3.1 in the paper), k represents whether a sample is from a sensitive or resistant cell
line (k = s ∈ {1, 2}). The full dataset can be represented by the vector Y = (yj) =
(yjk, j = 1, ..., p; k = 1, ..., K), where p denotes the number of features (proteins). In
addition, we introduce a binary q-vector xki that captures an additional characteristic
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Table A.3: List of Down-Down-Down proteins identified from u937 in both nuclear and
cell-surface data with respect to their posterior probabilities and estimated q-values.
Prob(Nucl) and Q(Nucll) are respectively marginal posterior probabilities (jMPP) and
estimated q-values for nuclear data, Prob(Surf) and Q(Surf) for cell-surface data.

UniProt id Gene Prob(Nucl) Q(Nucl) Prob(Surf) Q(Surf)
P27816-5 – 1.00 0.00 1.00 0.00
C9JL19 HSPD1 0.97 0.01 1.00 0.00
Q8NC51 SERBP1 0.91 0.02 1.00 0.00
P0CG39 POTEJ 0.81 0.05 0.94 0.01
Q07065 CKAP4 0.59 0.09 1.00 0.00
B0YJC5 VIM 0.52 0.10 0.93 0.01

X of our data (e.g., the collection time of the sample in Analysis 2). The generic

element of this vector x
(l)
ki is set to 1 if sample i of type k assumes level l = 1, ..., q

of this characteristic, and 0 otherwise. The general likelihood of the model can be
written as

P (Y |X,a,β,σ,ρ) =
∏
j,k

nk∏
i=1

N (yjki; ajρjk + xTkiβρjk , σ
2
ρjk

), (3)

where ρ = (ρjk) is the cluster membership variable defined by ρjk = h if protein j
expressed on a sample of type k (i.e., pair (j, k)) belongs to cluster h, and 0 otherwise.
When q ≤ 2, we define priors on βρjk as defined in the main paper. However, when
q > 2, priors are instead defined on β′

ρjk
= Cβρjk (or the q-binary matrix xki is replaced

by xTkiC
-1) in order to clearly define our pre-defined patterns, where C−1 = (cll′) is a

lower triangular contrast matrix of 1’s (i.e., cll′ = 1 if l ≥ l′ and 0 otherwise).
Let ph =

∑
j,k I(ρjk = h) be the number of elements in cluster h, and pkh =∑

j I(ρjk = h) be the number of features (proteins) in cluster h expressed in samples
of type k. I(ρjk = h) = 1 if (j, k) ∈ h and 0 otherwise. By integrating out µ and π
from the likelihood (4) (in the paper) and their prior distributions, we obtain

p(Y ,ρ|β,µ,σ) =
∏
j,k

N (yjk;X
T
k βρjk + µρjk1nk

, σ2
ρjk

Σkρjk)

∫ H∏
h=1

πphh p(π)d(π)

where Xk = (xk1, ...,xknk
)T is an nk × q binary matrix, and for ρjk = h, Σkh =

1nk
1Tnk

ch + Ink
, its inverse Σ−1kh = Ink

− ch
nkch+1

1nk
1Tnk

, 1Tnk
the nk-vector of 1’s, and

Ink
the identity matrix of size nk.
We can easily show that the full conditionals of cluster memberships can be written

as

p(ρjk = h|ρ(−jk),βh, µh, σ2
h) ∝

∑
(j′,k′) 6=(j,k) I(ρj′k′ = h) + αh

pK − 1 +
∑H

h=1 αh

[
N (yjk;X

T
k βh + µh1nk

, σ2
hΣkh)

]
(4)

For any component |βhl| > 0, we showed that, given τhl, ρ, µh, σh and βh(-l),
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sign(βhl)βhl ∼ T N (τhl, µβhl , σ
2
βhl

) where

σ−2βhl = σ−2h /bβ + σ−2h

K∑
k=1

pkhx
(l)T
k Σ−1khx

(l)
k

= σ−2h

(
1

bβ
+

K∑
k=1

pkh(x
(l)T
k x

(l)
k −

ch
nkch + 1

x
(l)T
k 1nk

1Tnk
x
(l)
k )

)
(5)

µβhl =
σ2
βhl

σ2
h

τhl
bβ

+
∑

(j,k)∈h

x
(l)T
k Σ−1kh (yjk − x(-l)T

ki βh(-l) − µh1nk
)

 (6)

We also showed that given ρ, βh and σh, µh ∼ N (µµh , σ
2
µh

) where

σ−2µh = 1/c2 + σ−2h

K∑
k=1

pkh1
T
nk

Σ−1kh1nk
(7)

= 1/c2 + σ−2h

K∑
k=1

pkh
nk

nkch + 1
(8)

µµh =
σ2
µh

σ2
h

∑
(j,k)∈h

pkh1
T
nk

Σ−1kh (yjk −XT
k βh) (9)

Finally, we updated the variance for each cluster as σ2
h ∼ IG(aσ2

h
, bσ2

h
) where

aσ2
h

= a+
K∑
k=1

nkpkh
2

(10)

bσ2
h

= b+
1

2

∑
(j,k)∈h

(yjk −XT
k βh − µh1nk

)TΣ−1kh (yjk −XT
k βh − µh1nk

) (11)

C Simulation results

Figures C.1 and C.2 in this Web Appendix show simulation results when the absolute
effects |βhl| are respectively 0.5 and 1. In these figures, we plot different thresholds
for classification against the average proportions of non-classified (NC), misclassified
(MC) and well-classified (WC) protein expression profiles. We computed the area over
the WC curve Awc, which can be considered as a measure of classification performance.

Figure C.3 in the Web Appendix depicts kernel density estimates of the posterior
means of all the βh in absolute values for one simulated dataset (βhl = 0.8 and ds = 2).
It appears that all the densities are centered at their true values, 0.8, confirming a
satisfactory performance of our approach.

In some contexts, classifying “Up” as “Down” (or vice versa) might be more prob-
lematic than classifying “Up” or “Down” as “Flat” (or vice versa). In order to under-
stand which type of errors influence the misclassification error (MCE) rate, we have
computed another type of misclassification rate for which we define misclassification as
classifying “Up” as “Down” or vice versa. Table C.1 shows that those MCEs are zero
except for the case of only one replicate and a small effect size (ds = 1 and β = 0.5).
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Figure C.1: Simulation results for |βhl| = 0.5: percentage of non-classified (NC),
misclassified (MC) and well-classified (WC) protein expression profiles with respect to
different thresholds on marginal posterior probabilities, and the number of samples,
ds, on 50 replicate data.
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Figure C.2: Simulation results for |βhl| = 1: percentage of non-classified (NC), mis-
classified (MC) and well-classified (WC) protein expression profiles with respect to
different thresholds on marginal posterior probabilities, and the number of samples,
ds, on 50 replicate data.
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Figure C.3: Posterior density estimates of the slopes βhl’s (or log2 fold-changes).
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Table C.1: Simulation results. Data are generated as in Section 6 of the manuscript.
MCE is the average misclassification error over ten replicate simulated datasets.
MCEUD is the average MCE of classifying “Up” as “Down” and vice versa. Stan-
dard deviations are within parentheses.

β ds MCE MCEUD

0.50 1.00 0.404159 (0.000932) 0.003043 (0.000143)
0.80 1.00 0.150247 (0.000700) 0.000031 (0.000009)
1.00 1.00 0.068166 (0.000458) 0.000000 (0.000000)
0.50 2.00 0.210316 (0.000752) 0.000112 (0.000021)
0.80 2.00 0.038422 (0.000345) 0.000000 (0.000000)
1.00 2.00 0.009691 (0.000176) 0.000000 (0.000000)
0.50 3.00 0.115294 (0.000425) 0.000010 (0.000006)
0.80 3.00 0.011844 (0.000171) 0.000000 (0.000000)
1.00 3.00 0.002478 (0.000080) 0.000000 (0.000000)
0.50 4.00 0.064519 (0.000452) 0.000000 (0.000000)
0.80 4.00 0.004175 (0.000151) 0.000000 (0.000000)
1.00 4.00 0.000866 (0.000053) 0.000000 (0.000000)

D Sensitivity analysis

We present an analysis of the sensitivity of our inference to the value of the hyperpa-
rameters. In particular, we focus on the prior distribution of three parameters: (a)
σ2
h, the variance parameter for each cluster, (b) τhl, the threshold parameter on the

effect βhl, and (c) πh, the unknown proportion of the included features (proteins) in
component h = 1, · · · , H. For each case, we computed the area over the well-classified
(WC) curve Awc, the area under the proportion of misclassified (MC) protein expres-
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sion profiles, Amc, and the area under the proportion of non-classified (NC) protein
expression profiles, Anc (see Figure C.1 for more details). We analyzed a simulated
dataset generated by setting |βhl| = 0.8, ds = 2 (the number of samples), and all the
other parameters to their “default” values as described in the main paper.

D.1 Prior for σ2h

We conducted simulations to evaluate the robustness of our clustering results to
the choices of the hyperparameters of the prior distribution of σ2

h. Remember that
σ2
h ∼ IG(a, b), an inverse gamma distribution with parameters a and b. We fixed
b = H−1/6 = 0.7 and investigated five different values of the shape parameter, a =
0.3, 0.5, 0.8, 1, 2. We also fixed a = 2, and investigated five different values of b =
0.1, 0.5, 0.7, 2, 4.

Tables D.1 and D.2 in this Web Appendix show that the results are insensitive to
these choices of a and b, even with relatively larger values of σ2

h (smaller a or larger b).

Table D.1: Sensitivity results on the hyperparameter a for the number of samples
ds = 2 on 10 replications. Awc is the area over the proportion of well-classified (WC)
protein expression profiles, Amc is the area under the proportion of misclassified (MC)
protein expression profiles, and Anc is the area under the proportion of non-classified
(NC) protein expression profiles. Standard deviations are within parentheses

a Anc Amc Awc
0.3 0.072 (0.003) 0.023 (0.001) 0.905 (0.003)
0.5 0.073 (0.003) 0.023 (0.001) 0.904 (0.003)
0.8 0.072 (0.002) 0.023 (0.001) 0.905 (0.002)
1 0.072 (0.003) 0.023 (0.001) 0.904 (0.003)
2 0.073 (0.002) 0.023 (0.001) 0.904 (0.002)

Table D.2: Sensitivity results on the hyperparameter b for the number of samples
ds = 2 on 10 replications. Awc is the area over the proportion of well-classified (WC)
protein expression profiles, Amc is the area under the proportion of misclassified (MC)
protein expression profiles, and Anc is the area under the proportion of non-classified
(NC) protein expression profiles. Standard deviations are within parentheses

b Anc Amc Awc
0.1 0.072(0.002) 0.023(0.001) 0.906(0.002)
0.5 0.073(0.002) 0.023(0.001) 0.904(0.002)
0.7 0.071(0.001) 0.023(0.001) 0.906(0.002)
2 0.073(0.003) 0.023(0.001) 0.904(0.003)
4 0.073(0.003) 0.023(0.001) 0.904(0.003)

D.2 Prior for τhl

The parameter τ is one of the key parameters in our approach since it truncates the
effects, βhl’s, to achieve clear discrimination between clusters. The choice of τ , which
is interpreted as the minimum log2 fold-change, can be determined by the investigator.
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In the paper, we imposed a gamma distribution with parameters aτ and bτ on this
parameter. To study its sensitivity, we set bτ = 10 and varied aτ to obtain different
thresholds (on average). More specifically, we ran our approach on simulated data for
aτ = 2, 4, 6, 8, 10, which resulted in respective prior means of 0.2, 0.4, 0.6, 0.8 and 1.
Table D.3 in the Web Appendix provides the mean areas over ten replicates. This table
shows that thresholds closer on average to the true βhl obtain better results (larger
Awc, smaller Anc and Amc ). Particularly, small values of aτ (i.e., small values of the
prior for τhl) lead to clusters that are less accurate. For instance, when aτ = 2 (i.e.,
on average, log2 fold-changes are larger than 0.2), we have larger numbers of both
misclassified and non-classified features (proteins).

Table D.3: Sensitivity results on the hyperparameter aτ for the number of samples
ds = 2 on 10 replications. Awc is the area over the proportion of well-classified (WC)
protein expression profiles, Amc is the area under the proportion of misclassified (MC)
protein expression profiles and Anc is the area under the proportion of non-classified
(NC) protein expression profiles. Standard deviations are within parentheses

aτ Anc Amc Awc
2 0.188 (0.004) 0.164 (0.007) 0.648 (0.010)
4 0.138 (0.004) 0.064 (0.002) 0.798 (0.006)
6 0.088 (0.004) 0.026 (0.001) 0.885 (0.004)
8 0.071 (0.001) 0.023 (0.001) 0.906 (0.002)
10 0.104 (0.006) 0.046 (0.003) 0.850 (0.008)

D.3 Prior for π

We evaluated the sensitivity of our analysis to the choice of priors, π′hs, which control
the inclusion proportions of the features (proteins) in each cluster. We kept the same
expected proportion and varied αh in order to change the variability of πh. More
specifically, we set the concentration parameters αh of the Dirichlet distribution prior
to five different values: αh = 5, 10, 20, 25, 30. The results presented in Table 3 in
the Web Appendix show that our approach seems to be insensitive to the choice of
variance of π.

Table D.4: Sensitivity results on the hyperparameter αh on 10 replications. Awc is
the area over the proportion of well-classified (WC) protein expression profiles, Amc
is the area under the proportion of misclassified (MC) protein expression profiles and
Anc is the area under the proportion of non-classified (NC) protein expression profiles.
Standard deviations are within parentheses

αh Anc Amc Awc
5 0.071(0.002) 0.024(0.001) 0.906(0.003)
10 0.074(0.002) 0.023(0.001) 0.903(0.002)
20 0.072(0.001) 0.024(0.002) 0.905(0.002)
25 0.072(0.003) 0.023(0.001) 0.905(0.003)
30 0.072(0.002) 0.023(0.001) 0.905(0.002)
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D.4 Prior for the random effect ajh.

We also evaluated the robustness of our clustering results to the choices of ch, the
hyperparameter of the random effect ajh. The results are presented in Table ??,
which shows that the results are insensitive to these choices of ch, in particular when
ch ≥ 0.5.

Table D.5: Sensitivity results on the hyperparameter ch for the number of samples
ds = 2 on 5 replicates. Awc is the area over the proportion of well-classified (WC)
protein expression profiles, Amc is the area under the proportion of misclassified (MC)
protein expression profiles, and Anc is the area under the proportion of non-classified
(NC) protein expression profiles. Standard errors are within parentheses

ch Anc Amc Awc
0.05 0.142 (0.043) 0.117 (0.106) 0.741 (0.133)
0.1 0.105 (0.026) 0.087 (0.063) 0.809 (0.079)
0.2 0.093 (0.017) 0.075 (0.033) 0.832 (0.04)
0.5 0.072 (0.005) 0.023 (0.004) 0.905 (0.006)
0.7 0.071 (0.005) 0.024 (0.004) 0.905 (0.005)
1 0.068 (0.004) 0.023 (0.003) 0.909 (0.004)
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Figure E.1: Graphical user interface in the web browser. “pb=0.5” means the se-
lection of proteins in the corresponding group was obtained with a threshold of 0.5.
“pmax=0.77” means the (joint) maximum marginal posterior probabilities of inclusion
(jMPP) for this group is 0.77. “N=10” means the number of isoforms in this group is
10. “Sen” stands for sensitive, “Res” for resistant.

E Shiny app

In this section, we provide a detailed description of the visualization tools introduced
in Section 5.3 of the main text. A screen shot of the Shiny application is presented in
Figure E.1 in the Web Appendix.
Our sidebar panel for inputs consists of the following elements: (i) Cell line type,
which consists of the three cell line types: TF1, u937 and HL60; (ii) Ind. variable
is either Time or Resistance. It is Time when we compare the protein expression
across all the time points in sensitive and resistant cell samples, and Resistance when
the comparison is between sensitive and resistant samples at different time points;
(iii) Data type is Nuclear, TCE or Surface; (iv) Prob. for Data type and cell line
type represents possible values of jMPP; (v) Pattern for Data type and Cell line type
represents the list of possible pattern groups obtained with a threshold value of the
jMPP; (vi) Number of isoforms to view shows the maximum number of protein isoforms
to view in the output panels Markers.prob and Overlap.

Our main panel for outputs can be categorized in three groups: (i) the Plot tab
shows 3-D plots of the observed data in a specific cluster of proteins; (ii) tab Mark-
ers.prob shows a list of proteins with their corresponding encoded genes and jMPP;
and (iii) the Overlap tab shows the list of common proteins identified between different
types of data, or cell lines, with their corresponding encoded genes and jMPP.
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F Comparison of clustering performance

Clustering methods such as K-means (Hartigan and Wong, 1979), hierarchical ag-
glomerative clustering (Hartigan, 1975), model-based clustering (Fraley and Raftery,
2002), and self-organizing map (SOM) (Tamayo et al., 1999) algorithms can also be
used to determine expression patterns in time-course data. However, these “standard”
clustering algorithms have the following limitations in the context of our goals.

1. Standard clustering methods are unconstrained. We constrain our Bayesian
clustering method to give direct and explicit biological interpretation of each
cluster with respect to the sign of the effect, which corresponds to a pattern
of interest. That is, each cluster can be identified/defined by the sign of the
regression coefficients and has a specific interpretation depending on the goal of
the analysis (Objective 1 or 2).

2. Our approach is able to find proteins that are differentially expressed between
two experimental conditions over time, a feature which is not well defined in
standard clustering algorithms.

3. Clustering algorithms could not be directly applied to our cell line data; since
we cluster pairs (j, k) (i.e., pairs of protein j’s – condition k’s), the sample size,
nk, may not be the same between experiments k’s. For instance, for cell line
HL60, we have n1 = 2 sensitive samples (one at time 0 and another at time 72h)
while we have n2 = 4 resistant cell line samples (2 at both time 0 and 72h). This
shows another aspect of our clustering approach, which is that it can be applied
to data with an unbalanced number of replicates between experiments, k’s.

4. Standard clustering methods do not account for duplicate samples as they treat
duplicates as “new” samples. Of course, duplicates can be averaged before ap-
plying clustering, but this will reduce the power to detect differential proteins.

Despite the limitations of the “standard” clustering algorithms, we have applied them
to the simulated data presented in Section 6 in the paper. Note that in this dataset,
the number of resistant samples n1 = 3∗d1 equals n2, the number of sensitive samples.
We used the clustering algorithms itemized hereafter.

• The standard k-means algorithm (Hartigan and Wong, 1979). We fixed the
number of clusters at k = H = 9, the true number of clusters. We implemented
the algorithm using the function kmeans of R.

• The hierarchical agglomerative clustering algorithm (Hartigan, 1975) with the
complete linkage method. We implemented the algorithm using the function
hclust in R. We cut the tree at the true number of clusters, H = 9.

• A model based-mixture clustering (Fraley and Raftery, 2002) implemented with
the R package mclust. The clusters are spherical but have different volumes
(“VII”). We used the Bayesian information criterion to choose the number of
mixture components G = 1, ..., 12.

• The self-organizing map (with application in gene clustering) algorithm (Tamayo
et al., 1999). We implemented this algorithm in the R package som, with one as
the x-dimension of the map and H = 9 as the y-dimension.
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We computed the adjusted Rand index (ARI) (Hubert and Arabie, 1985) to compare
the clustering results. The results are presented in Table F.1. Overall, the proposed
approach performed comparatively well.

Table F.1: Simulation results. Comparison of BACkPAy with standard clustering
algorithms. ARI is the adjusted Rand index over ten replicates. Standard deviations
are within parentheses.

Method βhl ds ARI
BACkPAy 0.5 1 0.353 (0.005)
Hclust 0.5 1 0.248 (0.013)

K-means 0.5 1 0.395 (0.026)
Mclust 0.5 1 0.396 (0.009)
SOM 0.5 1 0.381 (0.02)

BACkPAy 0.8 1 0.702 (0.007)
Hclust 0.8 1 0.53 (0.045)

K-means 0.8 1 0.731 (0.072)
Mclust 0.8 1 0.748 (0.02)
SOM 0.8 1 0.648 (0.08)

BACkPAy 1 1 0.857 (0.005)
Hclust 1 1 0.745 (0.058)

K-means 1 1 0.78 (0.053)
Mclust 1 1 0.865 (0.011)
SOM 1 1 0.685 (0.073)

BACkPAy 0.5 2 0.588 (0.008)
Hclust 0.5 2 0.376 (0.035)

K-means 0.5 2 0.59 (0.048)
Mclust 0.5 2 0.563 (0.007)
SOM 0.5 2 0.541 (0.006)

BACkPAy 0.8 2 0.918 (0.003)
Hclust 0.8 2 0.784 (0.083)

K-means 0.8 2 0.756 (0.046)
Mclust 0.8 2 0.855 (0.006)
SOM 0.8 2 0.734 (0.088)

BACkPAy 1 2 0.978 (0.002)
Hclust 1 2 0.978 (0.018)

K-means 1 2 0.823 (0.003)
Mclust 1 2 0.893 (0.005)
SOM 1 2 0.78 (0.047)

BACkPAy 0.5 3 0.75 (0.008)
Hclust 0.5 3 0.487 (0.04)

K-means 0.5 3 0.655 (0.063)
Mclust 0.5 3 0.67 (0.008)
SOM 0.5 3 0.59 (0.067)

BACkPAy 0.8 3 0.974 (0.001)
Hclust 0.8 3 0.856 (0.061)

K-means 0.8 3 0.713 (0.077)
Mclust 0.8 3 0.878 (0.004)
SOM 0.8 3 0.732 (0.053)

BACkPAy 1 3 0.994 (0.001)
Hclust 1 3 0.975 (0.029)

K-means 1 3 0.838 (0.002)
Mclust 1 3 0.90 (0.01)
SOM 1 3 0.828 (0.058)

BACkPAy 0.5 4 0.854 (0.006)
Hclust 0.5 4 0.51 (0.066)

K-means 0.5 4 0.694 (0.06)
Mclust 0.5 4 0.734 (0.006)
SOM 0.5 4 0.602 (0.08)

BACkPAy 0.8 4 0.991 (0.001)
Hclust 0.8 4 0.842 (0.104)

K-means 0.8 4 0.70 (0.065)
Mclust 0.8 4 0.893 (0.002)
SOM 0.8 4 0.745 (0.008)

BACkPAy 1 4 0.998 (0.00)
Hclust 1 4 0.99 (0.017)

K-means 1 4 0.821 (0.048)
Mclust 1 4 0.902 (0.009)
SOM 1 4 0.818 (0.003)
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G Performance of BACkPAy for detecting differ-

ential features in larger samples

We ran two additional scenarios with dt = 10 and dt = 15. The results, presented in
Table G.1, show that LIMMA and our BACkPAy method outperform the two other
methods mostly when the effect size is small. The table also shows that our approach
performs very well with a large sample size. We note that it is very unlikely to have
that many replicates in cell line experiments.

Table G.1: Simulation results with large numbers of samples per group, dt. AUC is
the average over five replicates of the area under the ROC curve. Standard deviations
are within parentheses.

Method dt |βhl| AUC
EDGE 10 0.5 0.951 (0.004)
MB-Statistics 10 0.5 0.753 (0.02)
LIMMA 10 0.5 1 (0)
BACkPAy 10 0.5 1 (0)
EDGE 15 0.5 0.978 (0.002)
MB-Statistics 15 0.5 0.762 (0.01)
LIMMA 15 0.5 1 (0)
BACkPAy 15 0.5 1 (0)
EDGE 10 0.8 0.972 (0.003)
MB-Statistics 10 0.8 0.786 (0.018)
LIMMA 10 0.8 1 (0)
BACkPAy 10 0.8 1 (0)
EDGE 15 0.8 0.989 (0.002)
MB-Statistics 15 0.8 0.781 (0.008)
LIMMA 15 0.8 1 (0)
BACkPAy 15 0.8 1 (0)

H R codes for implementation of the competing

methods

We provide a detailed description of our implementation of the competing methods
and include the R code we used to fit these methods. Most of these methods can only
be applied if we have at least 2 replicates for each time point.

1. MB-Statistics

#times gives the number of distinct time points (it is 3 in our case)

#timepoint is coded as 0, 1 and 2 indicating time 0h, 48h and 72h respectively

#cond is a binary variable indicating if a sample is sensitive or resistant

#reps is matrix that gives the number of replicates for each

#experimental group

MB.2D <- mb.long(data, method="2", times=times,

time.grp = timepoint, reps=reps, condition.grp=cond)

rhoest=MB.2D$HotellingT2
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The method is ”2” since proteins of interest are those with different expected
temporal profiles across two biological conditions (resistant and sensitive sam-
ples). Important proteins are obtained by ranking the Hotelling T̃ 2, and AUC’s
are computed using that ranking.

2. LIMMA method

#cond is a binary variable indicating if a sample is sensitive or resistant

#timepoint is coded 0, 1 and 2 indicating time 0h, 48h and 72h

f<-as.factor(paste(cond,timepoint,sep="."))

design <- model.matrix(~0+f)

fit <- lmFit(data, design)

cont.dif <- makeContrasts(Diff1=(f0.0-f1.0), Diff2=(f0.1-f1.1),

Diff3=(f0.2-f1.2),levels=design)

fit2 <- contrasts.fit(fit, cont.dif)

fit3 <- eBayes(fit2)

rhoest=1-fit3$F.p.value

Important proteins can be obtained by ranking 1-pvalue, and AUC’s are com-
puted using that ranking.

3. EDGE method

#ind is the individual factor for repeated observations of the same individuals.

#cond is a binary variable indicating if a sample is sensitive or resistant

#timepoint is coded 0, 1 and 2 indicating time 0h, 48h and 72h

full_model<-~grp + ns(tme, df = 1, intercept = FALSE) +

(grp):ns(tme, df = 1, intercept = FALSE)

null_model<-~ns(tme, df = 1, intercept = FALSE)

cov=data.frame(cbind(individual = ind, tme = time, grp = class))

rownames(cov)=colnames(data)

de_obj <- build_models(data, cov = cov, full.model =full_model,

null.model = null_model)

de_lrt <- lrt(de_obj,bs.its = 50,lambda=seq(0,0.9,0.01))

sig_results <- qvalueObj(de_lrt)

qvalues <- sig_results$qvalues

rhoest=1-qvalues

Important proteins can be obtained by ranking 1-qvalue, and AUC’s are com-
puted using that ranking.

Note that for all the competing methods, the alternative hypothesis is H1: protein
responds differentially over time in the sensitive relative to the resistant sample. That
is, a protein is differentially expressed (DE) if there is at least one time point when
it is differentially expressed between sensitive and resistant samples. Hence, a protein
is non-DE when its expression is the same between resistant and sensitive samples at
each time point.
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I Comparison between BACkPAy and the simple cut-
off method

Since the sample size is extremely small for all scenarios considered in this manuscript,
a simpler alternative to our approach may consist in directly setting experience-driven
cutoff values, e.g., for the log fold change, to determine differential expressed proteins.
We showed here that using a simple cutoff provides worst results than our Bayesian
methods.. For that,

• We have simulated 1000 protein expressions expressed between 2 modalities of
both the experimental and the independent variables. We chose 2 as the number
of samples in each group (obtained from the combination of the experimental
and independent variables), which gives a total of 2×2×2=8 samples (see the
R code below for more information). We varied the slope in each cluster such
as every protein has its own slope βjh generated as uniform (0.5,1) in absolute
values.

• We have first selected differential expressed proteins based only on setting cut-off
values between modalities 0 and 1 of the independent variable for each modality
of the experimental variable. Cut-offs were set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8. 0.9, 1. We call this approach Simple cutt-off.

• We have then selected differential expressed proteins using our BACkPAy method
by using a threshold of 0.5 on marginal posterior probabilities of selecting DEs.
We set the hyperparameters bτ = 20 and aτ ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2},
which correspond to an average (log2-) fold change of at least aτ/20 ∈ {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8.0.9, 1} (i.e E(βhl) ≥ E(τhl) = aτ/bτ ) on the prior distribu-
tion. We note that this is not a “hard” constraint on the prior of the effect βhl as
its truncated value τhl is also considered as a parameter (i.e its estimated value
is not only guided by the investigator belief but also the data).

We implemented both the Simple cutt-off and BACkPAy methods as described
above. We computed the misclassification error (MCE) of detecting DE proteins for
both methods (see Figure I.1). The figure shows that BACkPAy is much less sensitive
for the choice of aτ . Moreover, the AUC for selecting DE was all always >0.98. It can
be risky to just apply a cut-off to detect DE proteins as it does not account for the
variability of data. With the cutt off of 0.5, the minimum effect value used to generate
the data, we obtained an MCE of 0.115 with the simple cut-off method. The results
are worst for larger cut-offs.

J Unbalanced cluster sizes: simulation results

In this Section, we studied the ability of our method to identify clusters with unbal-
anced sizes. We have performed a sensitivity analysis on the simulated data by using
different proportions between the clusters. Specifically, we generated data as explained
in Section 5.4 but with four different scenarios by varying the proportions of elements
((j, k)’s) in clusters h = 1, 2, 3:

• S1=(1/3,1/3,1/3);
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Figure I.1: A comparison with a simple cut-off method
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• S2=(0.2,0.5,0.3);

• S3=(0.15,0.6,0.25);

• S4=(0.08,0.8,0.12);

Cluster 2 (“zero” cluster) elements have no effect on the explanatory variable, and
we would expect it to be larger than the others in practice. To run BACkPAy, we
have used a common αh = 20 as specified in Section 5.1 of the manuscript. Results
in Table J.1 show that our method is insensitive to the proportions between clusters
in terms of detecting DE proteins. Moreover, Table J.2, which shows the clustering
performance of our method, confirms this result. BACkPAy seems to have better
clustering performance with larger number of elements in the “zero” cluster (cluster
with zero effect, β2 = 0), which can be explained by the ability of our approach to
better discriminate clusters through truncated distributions imposed on the slopes β’s.

K A simulation study to investigate the effect of the
signal-to-noise ratio

First, we have generated a new set of data sets (20 replicates) by increasing the stan-
dard deviation in each cluster to σh = 0.6 (from 0.2). We have now more variability in
the results, which are overall worse than the results presented in Table 2 of the paper.
However, we still observe the same trend, with LIMMA and our method performing
similarly in terms of detection DE when the number of samples in each group (dt) is
larger than 1. However, BACkPAy is the only method that performs reasonably in
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Table J.1: Simulation results for detecting DE proteins with respect to 4 scenarios
of different cluster proportions, the number of duplicates dt, and the cluster standard
deviation σh. AUC represents the AUC for detecting DE proteins.

Proportions dt AUC
S1 1 0.957 (0.007)
S2 1 0.930 (0.0055)
S3 1 0.922 (0.002)
S4 1 0.905 (0.0065)
S1 2 0.990 (0.001)
S2 2 0.984 (0.0015)
S3 2 0.982 (0.001)
S4 2 0.975 (0.002)

Table J.2: Simulation results for clustering performance with respect to 4 scenarios
of different cluster proportions, the number of duplicate samples dt. Awc is the area
over the proportion of well-classified (WC) protein expression profiles, Amc is the area
under the proportion of misclassified (MC) protein expression profiles, and Anc is the
area under the proportion of non-classified (NC) protein expression profiles. Standard
errors are within parentheses

Proportions dt Anc Amc Awc
S1 1 0.082 (0.004) 0.125 (0.004) 0.793 (0.007)
S2 1 0.077 (0.003) 0.116 (0.005) 0.808 (0.007)
S3 1 0.075 (0.005) 0.11 (0.004) 0.815 (0.007)
S4 1 0.081 (0.004) 0.102 (0.005) 0.817 (0.007)
S1 2 0.062 (0.004) 0.062 (0.003) 0.876 (0.005)
S2 2 0.054 (0.003) 0.059 (0.005) 0.887 (0.006)
S3 2 0.046 (0.002) 0.05 (0.004) 0.904 (0.005)
S4 2 0.032 (0.002) 0.033 (0.002) 0.936 (0.003)

the case of one duplicate (dt = 1). LIMMA cannot run when dt = 1 as it does not
have enough degrees of freedom to estimate the variance.

In addition to this scenario, we have also generated additional simulated data from
a model with a fixed slope (i.e |βh| = 1) and a range of cluster standard deviations
σh ∈ {0.4, 0.6, 0.8, 1, 1.2}, which correspond to the following signal-to-noise ratios: 2.5,
1.666, 1.25,1, 0.833. The rest of simulation settings is as in Section 5.4. The results are
presented in Table K.2, which again shows similar performances of the two approaches
(BACkPAy and LIMMA). However, our method results in smaller standard errors.
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Table K.1: Simulation results for detecting DE proteins. Data are generated with
σh = 0.6. AUC stands for the average over 20 replicates of the area under the ROC
curve. Standard deviations are within parentheses.

Method Replicates Beta AUC Replicates Beta AUC
EDGE 1 0.5 0.5 (0.016) 3 0.5 0.608 (0.015)
MB-Statistics 1 0.5 NA (NA) 3 0.5 0.553 (0.019)
LIMMA 1 0.5 NA (NA) 3 0.5 0.676 (0.015)
BACkPAy 1 0.5 0.566 (0.018) 3 0.5 0.672 (0.014)
EDGE 1 0.8 0.507 (0.019) 3 0.8 0.704 (0.013)
MB-Statistics 1 0.8 NA (NA) 3 0.8 0.589 (0.018)
LIMMA 1 0.8 NA (NA) 3 0.8 0.832 (0.011)
BACkPAy 1 0.8 0.646 (0.014) 3 0.8 0.828 (0.010)
EDGE 1 1 0.512 (0.019) 3 1 0.752 (0.011)
MB-Statistics 1 1 NA (NA) 3 1 0.606 (0.017)
LIMMA 1 1 NA (NA) 3 1 0.904 (0.007)
BACkPAy 1 1 0.706 (0.012) 3 1 0.900 (0.008)
EDGE 2 0.5 0.569 (0.015) 4 0.5 0.646 (0.015)
MB-Statistics 2 0.5 0.565 (0.014) 4 0.5 0.584 (0.012)
LIMMA 2 0.5 0.63 (0.018) 4 0.5 0.727 (0.014)
BACkPAy 2 0.5 0.628 (0.019) 4 0.5 0.720 (0.014)
EDGE 2 0.8 0.637 (0.014) 4 0.8 0.755 (0.012)
MB-Statistics 2 0.8 0.641 (0.013) 4 0.8 0.657 (0.011)
LIMMA 2 0.8 0.765 (0.014) 4 0.8 0.885 (0.009)
BACkPAy 2 0.8 0.762 (0.016) 4 0.8 0.880 (0.009)
EDGE 2 1 0.676 (0.013) 4 1 0.802 (0.011)
MB-Statistics 2 1 0.69 (0.012) 4 1 0.697 (0.011)
LIMMA 2 1 0.842 (0.011) 4 1 0.944 (0.005)
BACkPAy 2 1 0.840 (0.013) 4 1 0.939 (0.005)
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