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1. Non-linear functional form

As stated in the paper, the functional form of the non-linear regression

f(N) = σ2
φ

N

N + h
(1)

is the exact relationship between N and σ2
X(N) in normal-normal conjugate models with only one underlying

parameter. We briefly demonstrate this relationship in this section.
Assume that we have a parameter of interest θ which is modelled with a normal distribution

θ ∼ Normal(µ, ε2).

We consider collecting additional information to inform this parameter with a sampling distribution condi-
tional on θ

Xi ∼ Normal(θ, ε2X),

for i = 1, . . . , N . As this is a normal-normal conjugate model with known variance, we know that the
posterior of θ is given by

θ |X ∼ Normal
(
ε2Xµ+Nε2X̄

ε2X +Nε2
,

ε2ε2X
ε2X +Nε2

)
,

where X̄ = 1
N

∑N
i=1Xi.

Recall that the variance of the preposterior mean for θ for a specific N is calculated as follows:

σ2
X = VarX

[
Eθ|X [θ]

]
=Var [θ]− EX

[
Varθ|X [θ]

]
(2)

=ε2 − EX

[
ε2ε2X

ε2X +Nε2

]
. (3)

In this setting, the posterior variance of θ does not change depending on the value of the observed sample
X but only depends on the known variance εX . Therefore,

σ2
X = ε2 − ε2ε2X

ε2X +Nε2
= ���ε2ε2X + ε2Nε2����−ε2ε2X

ε2X +Nε2
.

To get the equation in (1), we then divide by ε2 in the numerator and denominator giving,

σ2
X = ε2

N
ε2X
ε2 +N

,

and finally set h =
ε2X
ε2 .
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2. Multi-Decision Models

In general, there is little theoretical difference between the moment matching method for multi-decision
models and the moment matching method in the dual-decision setting that has been presented in the paper.
The method still proceeds by calculating the posterior variance of the incremental net benefit across different
potential simulated datasets. These calculated variances are then used to rescale the expectation of INBφ.
However, as we have more than two decisions, the incremental net benefit is defined in a slightly different
manner.

In the multi-decision setting, we choose a reference treatment, say T , and then calculate the incremental
net benefit of all the treatments with respect to this reference treatment, i.e.

INBθt = NBθt −NBθT .

Therefore, the incremental net benefit INBθ is a multivariate random vector:

INBθ =


INBθ1
INBθ2

...

INBθT−1

 . (4)

This means that the variance of INBθ is a variance-covariance matrix rather than a scalar. Thus, we denote
it Σθ. If the EVSI calculation is being performed in R, then the variance-covariance matrix is computed
when using the var() function so this extension adds no complexity to the moment matching procedure.

To find INBφ using non-parametric regression, a regression curve should be fitted for incremental net
benefit to give a multivariate vector:

INBφ =


INBφ1
INBφ2

...

INBφT−1

 , (5)

with a variance covariance matrix denoted Σφ. The standard moment matching method would proceed as
normal, i.e. for each potential sample Xq, we would calculate the variance of INBθ, the only difference in
the multi-decision setting is that the variance is a variance-covariance matrix which we denote Σq.

In the multi-decision setting, as before, we are aiming to estimate the distribution of µX = Eθ|X

(
INBθ

)
.

However, this is now a multivariate distribution with a variance-covariance matrix, denoted ΣX . Each
element of this matrix, σijX for i = 1, . . . , T − 1 and j = 1, . . . , T − 1, is calculated in a similar manner as
the dual decision setting,

σijX = σijθ −
1

Q

Q∑
q=1

σijq ,

where σijθ is the element of the i-th row and j-th column of the Σθ matrix and σijq is the same element of
the Σq matrices. This is therefore, the same formula as the dual-decision setting but separately for each
element of the variance-covariance matrix.

To rescale the distribution of INBφ, we use the same formula as in the standard method, but, rather
than dividing by the standard deviation we must multiply by the inverse matrix square root. Matrix square
roots and inverses are well-defined and can easily be found in R using the expm package. Therefore, to rescale
the simulated PSA vectors for INBφ, denoted INBφs , s = 1, . . . , S, we use the following formula:

ηXs = (INBφs − µ)Σ
− 1

2

φ Σ
1
2

X + µ.

The EVSI is then calculated by taking the row-wise maximum of each of the ηXs vectors and 0 and then
taking the mean of these maximums.
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Using non-linear regression to calculate the EVSI in multi-decision problems involves an extension to the
standard method. The non-linear model defined in the main paper is a scalar function and we must estimate
a variance-covariance matrix across different sample sizes. Therefore, we must extend this regression model
to a matrix function. In practice, we suggest that the non-linear regression function is extended by fitting
the non-linear model from main paper

f(N) = σ2
φ

N

N + h

separately for each unique element of the variance-covariance matrix. Essentially, this involves estimating
the element in the i-th row and j-th column of the variance matrix ΣX(N) for a sample size N , denoted
σijX(N) as

f ij(N) = σijX(N) = σijφ
N

N + hij
,

where σijφ is the i-th, j-th element of the Σφ matrix. It is possible to demonstrate in a decision model with
three treatment options that these functions approximately estimate the variance of both incremental net
benefits and their covariance in normal-normal conjugate settings.

As the covariance matrix is symmetric, f ij(N) = f ji(N) and so we fit

(T − 1)(T − 2)

2

regression models separately to calculate the EVSI across different sample sizes, where T is the number of
possible interventions. Each curve will produce an estimate for the hij parameter and these distributions
can be combined to find the posterior distribution of the variance-covariance matrix for ΣX(N) for each
sample size N under consideration.

Finally, recall that for the dual-decision setting presented in the paper, the distribution of σ2
X(N) was

approximated by a low-dimensional summary for each sample size considered. In the multi-decision setting,
this low-dimensional representation of the is more challenging to conceive. One suggestion is to summarise
each posterior for hij by finding the median. It is then possible to create a variance-covariance matrix which
contains the median value of hij from each posterior combined with a sample size of interest. This “median”
variance-covariance matrix could then used to rescale INBφ using the formula above. The EVSI is then
calculated from the rescaled INBφ values using standard formuæfor the EVSI in multi-decision settings.

Repeating the creation of matrices for alternative quantiles of the posterior distribution would give a
low-dimensional summary of the possible EVSI values. For example, you could create a variance-covariance
matrix that contains all the 2.5th quantiles from each posterior for hij and then use this to calculate the
EVSI. Coupled with a similar matrix created with the 97.5th quantiles would give the EVSI for a 95%
credible interval.

3. Calculating the EVSI using Moment Matching for the Brennan and Kharroubi Example

This model has frequently been used to assess calculation methods for the EVSI. It was first developed
by Brennan and Kharroubi [3] and modified by Menzies [5] to compare two treatments used to treat a
hypothetical disease. For each drug, a patient can respond to the treatment, experience side effects or visit
hospital for a certain length of time. A utility value is assigned to each of these possible outcomes and costs
are associated with the drugs and hospital stays.

All the parameters are assumed to be normal with the mean and standard deviation given in Table 1.
The studies are also assumed to have normal distributions, with the standard deviations given in Table 1.
In this example, it is assumed that θ5, θ7, θ14 and θ16 are correlated with correlation coefficient 0.6 and the
parameters θ6 and θ15 are also correlated with a correlation coefficient 0.6 and independent of the other set
of parameters.

The net benefits for each treatment are calculated as a deterministic function of these parameters

NB1 = λ(θ5θ6θ7 + θ8θ9θ10)− (θ1 + θ2θ3θ4),
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Mean Standard Deviation (SD) Data SD
Parameter t = 0 t = 0 t = 0 t = 1 t = 0 t = 1
Drug Cost (θ1, θ11) $10 000 $15 000 $10 $10 - -
Probability of Hospitalisation (θ2, θ12) 0.1 0.08 0.02 0.02 - -
Days in Hospital (θ3, θ13) 5.2 6.1 1 1 - -
Hospital Cost per Day (θ4) $4 000 $4 000 $2 000 $2 000 - -
Probability of Responding (θ5, θ14) 0.7 0.8 0.1 0.1 0.2 0.2
Utility Change due to Response (θ6, θ15) 0.3 0.3 0.1 0.05 0.2 0.2
Duration of Response (years) (θ7, θ16) 3 3 0.5 1 1 2
Probability of Side Effects (θ8, θ17) 0.25 0.2 0.1 0.05 - -
Utility Change due to Side Effects (θ9, θ18) -0.1 -0.1 0.02 0.02 - -
Duration of Side Effects (years) (θ10, θ19) 0.5 0.5 0.2 0.2 - -

Table 1: The parameters for the Brennan and Kharroubi example. The mean and standard deviations for the distributions of
the parameters is also given, along with the standard deviation of the data collection exercise aimed at reducing uncertainty
in that parameter

NB2 = λ(θ14θ15θ16 + θ17θ18θ19)− (θ11 + θ12θ13θ4),

with λ = $100 000. Five alternative data collection exercises are proposed by Menzies and are also considered
in this exploration:

1. A clinical trial collecting information on the probability that a patient responds to the two treatment
options which informs parameters θ5 and θ14.

2. A study looking at the utility improvement for responding to the different treatments which informs
parameters θ6 and θ15.

3. A study investigating the duration of response to the therapy (for those who do respond), informing
parameters θ7 and θ16.

4. A study combining the first two studies, i.e. informing θ5, θ6, θ14 and θ15.

5. A study combining all the previous studies and therefore informing θ5, θ6, θ7, θ14, θ15 and θ16.

3.1. Analysis for the BK example

To estimate the EVSI for different sample sizes using the moment matching method, the PSA distribution
for the incremental net benefit is estimated using 1 million simulations from the parameter distributions.
This implies that σ2 and µ, the variance and mean of the incremental net benefit respectively, are estimated
using this full sample. INBφ are also found using these 1 million simulations, expect for exercise 5 which
is based on 6 underlying parameters meaning that the computational demands of estimating INBφ was too
high. These fitted values are, therefore, based on 20 000 simulations and obtained using the R package BCEA

[1, 2].
In line with Menzies [5], sample sizes between Nmin = 10 and Nmax = 200 are considered for each of

the different exercises outlined above. Throughout the analysis, we set Q = 50 which implies that 10 000
simulations are taken from 50 different posterior distributions to calculate the variance of the posterior
incremental net benefit for 50 different sample sizes. The distribution for the EVSI is then determined using
the method described in §?? in the main paper.

The results determined using our method are compared with the nested Monte Carlo approach for
calculating the EVSI and Menzies’ approach which also reweights the PSA simulations for the INB but with
an alternative method. These results are taken directly from Menzies [5] and are the most accurate estimates
available. The conventional approach required 1 billion model evaluations per sample size compared with
500 000 model evaluations for the moment matching method to estimate the EVSI across the different sample
sizes.
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3.2. Results for the BK example

Figure 1 shows the EVSI estimates for the BK example. The solid line gives the EVSI calculated with
the median of the posterior distribution of σ2

X(N), whereas the dashed line is the 75% credible interval and
the dotted line the 95% credible interval. The EVSI estimates from the nested Monte Carlo estimator and
the Menzies estimator are given by the red dots and the blue crosses respectively. The nested Monte Carlo
estimator (representative of the “true” EVSI) is within the 95% credible interval for all exercises except
exercise 5 (bottom), where the EVSI is slightly over estimated for small values of N . This small over-
estimation may be due to the inaccuracies introduced by estimating INBφ using only 20 000 observations,
as opposed to the full PSA simulation used for the other examples.

Figure 1 demonstrates that the EVSI is estimated with more relative precision as the EVSI estimate
increases. This is because, for small values of the EVSI, the difference between σ2

q and σ2 is small and the
estimate of the two variances needs to be very accurate in order to estimate the difference. Therefore, this
method for the EVSI calculation should be reserved for situations where the underlying parameters have
significant value. If the EVSI estimate is too variable to aid decision making, as seen by the confidence bands,
then more simulation should be undertaken. In general, extra simulations should be gained by increasing Q,
provided the number of posterior simulations is sufficient to characterise the distribution of the “posterior”
incremental net benefit [4].
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Figure 1: The EVSI estimate calculated with the posterior median of σ2
X (solid line) along with 75% (dashed line) and 95%

(solid line) posterior credible intervals for the BK example; Study 1 (Top Left), Study 2 (Top Right), Study 3 (Middle Left),
Study 4 (Middle Right) and Study 5 (Bottom). These are compared with the nested Monte Carlo estimates (red dots) and the
Menzies estimates (blue crosses). The EVPPI for the parameters targeted by the study is shown as the horizontal red line.
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