Supplementary Material

Table S. 1 - Ankle joint range of motion, peak net moment, and angular velocities over stance. Instantaneous net ankle joint power = (moment*angular velocity) was integrated to obtain ankle positive/negative work reported in the main manuscript. PRE=pre-training, POST=post-training, FU1=1-month follow up, FU5=5-month

Visit	Run Speed (m / s)	Ankle Range of Motion (Deg)		Ankle Moment ($\mathrm{Nm} / \mathrm{kg}$)		Max Ankle Angular Velocity (Deg/sec)					
				Plantarflexion	Dorsiflexion						
		L	R			L	R	L	R	L	R
PRE	2.0-2.2	10(1)	41(3)	1.8(0.5)	1.7(0.6)	105(23)	301(55)	124(6)	182(8)		
POST	1.9-2.2	11(1)	34(3)	2.8(0.4)	2.2(0.4)	139(21)	323(50)	137(24)	172(29)		
FU1	2.0-2.2	10(1)	38(5)	2.7(0.4)	2.3(0.3)	113(10)	374(32)	177(24)	209(23)		
FU5	2.0-2.1	15(1)	34(5)	3.3(0.3)	2.5(0.1)	183(15)	344(12)	194(4)	172(4)		
AB	2.5	33(4)		2.2(0.3)		392(41)		252(53)			

Table S. 2 - Representative data illustrating the effect of varied strike index on ankle and foot work. Trial 1 and Trial 2 during PRE had 33% and 7% strike indices respectively, while Trial 3 during POST had a 40% strike index - firmly in the midfoot classification. Substantial variation exists between Trial 1 and Trial 2 in the work ratios for the ankle and foot when calculated separately, while a ratio of the summed ankle+foot work ($W R_{\text {AF }}$) is relatively similar. Trial 3 at POST had even greater $W R_{A F}$, as the ankle contributed more work to the sum relative to the distal foot. This demonstrates that while rearfoot striking can yield relatively similar net $W^{\text {AF }}$ to midfoot striking, underlying ankle-foot work constituents can differ. Regardless, in a relative comparison, a midfoot strike was more effective as it yielded the greatest $W_{\text {AF }}$ magnitude in addition to low inter-cycle variability (Trial 3). This is likely due to the distal foot + PD-AFO footplate complex being less mechanically efficient than the ankle + PD-AFO strut complex, in terms of storing and returning elastic energy.

	PRE Trial 1 (3 minutes) SI = 33\% (rear-midfoot)		PRE Trial 2 (7 minutes) SI $=7 \%$ (heel)			POST Trial 3 (7 minutes) SI = 40\% (midfoot)			
	Ankle	Foot	$\mathbf{A + F}$ Sum	Ankle	Foot	A+F Sum	Ankle	Foot	A+F Sum
+work (J/kg)	0.28	0.01	$\mathbf{0 . 2 9}$	0.10	0.11	$\mathbf{0 . 2 1}$	0.33	0.01	$\mathbf{0 . 3 4}$
-work (J/kg)	-0.19	-0.25	$\mathbf{- 0 . 4 4}$	-0.23	-0.16	$\mathbf{- 0 . 3 9}$	-0.25	-0.17	$\mathbf{- 0 . 4 2}$
work ratio (\%)	147%	4%	$\mathbf{6 6 \%}$	43%	69%	$\mathbf{5 4 \%}$	132%	6%	$\mathbf{8 1 \%}$

