Appendix A: The classical AK-MCS method

The Kriging method regards the g-function as an *n*-dimensional Gaussian random field, which reads:

$$g \square \square \mathbf{x} \square \mathbf{f} \mathbf{x} \square \square^{T} \boldsymbol{\beta} \square Z \square \square \mathbf{x}$$
(A1)

where $f x \prod_{r=1}^{n} \beta$ refers to an linear regression model with a set of functional basis $f \prod_{r=1}^{n} f_1, \dots, f_d \prod_{r=1}^{n}$

 $Z \square \square x$ indicates a *n*-dimensional Gaussian random field with zero mean and variance \square_{g^2} . The covariance function of the random field for any two point $x^{\square_i \square}$ and $x^{\square_j \square}$ is given as:

$$C_{gg} \square \mathbf{x} \square \square_i, \mathbf{x} \square \square_j \square \square_{g^2} R \square \mathbf{x} \square \square_i \square \mathbf{x} \square \square_j \square$$
(A2)

where ${}^{R}\Box x_{\Box \Box_{i}} \Box^{x_{\Box \Box_{j}}} \Box$ is the autocorrelation function, and the most commonly used one is the

exponential one given by:

 $R \square_{x \square \square i} \square_{x \square \square j} \square \square exp \square \square \square \square_{k \square 1} \square \square \square$ $x_{k \square \square i} \square_{k x_{k \square \square j}} \square_{i} \square \square \square_{2} \square \square \square \square \square \square$ $(A3) \square_{n} \square$

and \Box_k is a parameter measuring the strength of the autocorrelation. Then given a set of N_0 training τ samples

 $\Box_{x^{\Box}} \Box_{1}, \ldots, x^{\Box_{N_{0}}\Box}$ and the corresponding values $z \Box \Box_{g} \Box_{x^{\Box}} \Box_{1} \Box, \ldots, g \Box_{x^{\Box_{N_{0}}\Box}} \Box \Box$ of the

gfunction, the mean value $\Box_{g} \Box = \Box x$ and the variance $\Box_{g} \Box x \Box$ for a new point *x* conditional on these training samples are given as [24]:

$$\Box \Box_{s} \Box \Box x \Box f x \Box f^{T} \Box \beta \Box r x \Box \Box^{T} R^{\Box 1} \Box_{z} \Box F \Box \beta \Box$$

$$\Box^{2} 2 T \Box^{1} T T \Box^{1} \Box^{1} \Box^{2} \Box \Gamma T T \Box^{1} \Box^{1} \Box^{2} \Box^{2}$$

where **R** is the correlation matrix of these N_0 training samples, $r x \square$ \square refers to the vector of correlation functions between x and the N_0 training samples, **F** indicates the regression matrix

computed by $F_{ij} \square f_j \square x^{\square \square i} \square$ with $i \square 1' \dots, N$ and $j \square 1, \dots, d$, $u x \square \square \square \mathbf{F} \mathbf{R}^{T \square i} r x \square \square \square f x \square \square$ and

 Then $\Box_{g^2} \Box x \Box$ refers to the Kriging surrogate model, and $\Box_{g^2} \Box x \Box$ indicates the mean square error

(MSE) of the estimator $\Box_{g^{\circ}} \Box x \Box$. It holds that $\Box_{g^{\circ}} \Box x^{\Box \Box_j} \Box \Box \overset{g}{\Box} x^{\Box \Box_j} \Box$ and $\Box_{g^{\circ}} \Box x^{\Box \Box_j} \Box \Box 0$

for *j* \Box 1,2,...,*N*₀

The AK-MCS procedure for estimating the failure probability is summarized as follows [24]:

Step 1: Generate a MC population \mathbf{W} of N (N is large, i.e., 1e5) samples of the input vector. Randomly chose N_0 (N_0 is small, i.e., 12) samples from the population \mathbf{W} . Estimate the corresponding *g*function values for these N_0 training samples, and attribute these N_0 samples to the training population \mathbf{W}_t .

Step 2: Train the Kriging model based on the training population W_t using the DACE toolbox [24].

Step 3: Generate the Kriging prediction $\Box_{g^*} \Box^{x_{\Box}} \Box_{j} \Box$ and $\Box_{g^{*2}} \Box^{x_{\Box}} \Box_{j} \Box$ for each of the remaining *N*-

 N_0 MC samples based on the well-trained Kriging model, and then estimate the value of the U function for each of these $N-N_0$ MC samples by $U_j \square^U \square_{\mathbf{x}} \square^{\Box} \square_{j} \square \square_{g^*} \square_{\mathbf{x}} \square^{\Box} \square_{j} \square / \square_{g^{*2}} \square_{\mathbf{x}} \square^{\Box} \square_{j}$

 \Box . If $\min_{j \equiv 1}^{N} U_j \Box 2$, then add the sample with the minimum U value to the training population

 \mathbf{W}_{t} , let $N_{0} = N_{0} + 1$, go to step 2; otherwise, estimate the failure probability as well as the C.O.V. of the estimate based on the Kriging predictions of the *N* MC samples contained in \mathbf{W} .

Т

Step 4: If the C.O.V. of the estimate of failure probability is greater than 0.05, then update **W** with a new MC population, and go to step 3; otherwise, end the procedure.

Appendix B: IS Estimators of the GRS indices

Γ

Let x_j indicate the random replication of x_j ($j \Box 1, 2, ..., n$), $\mathbf{x}_{\Box i} \Box \Box x_1, ..., x_{i \Box 1}, x x_i, i_{\Box 1}, ..., x_n$, $\mathbf{x}_{i} \Box \mathbf{x}_{i}, ..., \mathbf{x}_{i \Box 1}, ..., \mathbf{x}_{n} \Box$,

 $\mathbf{x}'_{i} \square \square x_{1}, \dots, x_{i_{\Box}1}, \mathbf{x} x_{i}', \mathbf{z}_{\Box}1, \dots, \mathbf{x}_{n} \square$ and $\mathbf{x}' \square \square x_{1}', \mathbf{x}_{2}', \dots, \mathbf{x}_{n}' \square$. As $\mathbb{E} \square \square I_{F} \square \square \mathbf{x} | \mathbf{x}_{i} \square \square \square \mathbb{E} \square \square I_{F} \square \mathbf{x}_{\Box}'$ $_{i} \square | \mathbf{x}_{i} \square \square$ and

 $E \qquad \Box \Box_{\Box} \Box_{I_{F}} \Box \Box \mathbf{x} = E \Box_{\Box} I_{F} \Box \mathbf{x}^{'} \Box_{\Box} \Box_{\Box}, \text{ the main partial variance } V_{i} \text{ can be derived as:}$ $V_{i} \Box_{R} E \Box \Box I_{F} \Box \Box \mathbf{x} | x_{i} \Box \Box E \Box \Box I_{F} \Box \mathbf{x}_{\Box'} \Box | x_{P} x_{i} \Box \Box \Box \Box_{i} dx_{i} \Box E \Box \Box I_{F} \Box \mathbf{x} \Box \Box E \Box \Box I_{F} \Box \mathbf{x}^{'}$ $\Box_{\Box} \Box \Box \Box \Box I_{F} \Box \mathbf{x}^{'} \Box I_{F} \Box I_{F} \Box \mathbf{x}^{'} \Box I_{F} \Box \mathbf{x}^{'} \Box I_{F} \Box$

2

n

 $\Box \Box_{R_{2n} \Box I} I_F \Box \Box x I_F x_{\Box'} i \Box_{k \Box I} p x_k \Box k \Box_{k \Box \Box I, k i} p x_k \Box k \Box_{k \Box \Box I, k i}$

 $\square \square \square \square_{R_{n}}I_{F} \square \square \mathbf{x} \square_{n}p x_{k} \square_{k} \square dx_{k} \square \square \square \square_{R_{n}}I_{F} \square \mathbf{x} \square_{n}p x_{k} \square_{k} \square_{dx_{k}} \square \square \square \square u_{k\square} \square u_{$

 $\Box \Box \Box \Box \Box_{R_{2n}} \Box \Box I_F \Box \Box x$

 $\Box_{n1} h xp x_k \Box_k \Box \Box \Box \Box \Box \Box I_F \Box x \Box \Box_{n1} h xp x_k \Box \Box_{\mathcal{K}} \Box \Box \Box \Box \Box_{n1} \Box h x$

 $h x_k \square k \square k \square k \square dx x_k d k \square \square$

 $\Box \Box_{R^{2n}} \Box \Box^{\Box} \Box I_F \Box \Box \mathbf{x} \Box_{kn\Box 1} h xp x_{kk} \Box \Box_{kk} \Box \Box \Box \Box \Box \Box \Box \Box \Box I_F \Box \mathbf{x}_{\Box' i} \Box_{j\Box} \Box \Box_{1n,ji} h xp x_{jj} \Box \Box_{kk'} \Box \Box \Box \Box \Box L_{kn\Box 1}$ $\Box h x h x_k \Box_k \Box_k \Box_k \Box_k \Box_k \Box_k \Box \Box$

(A5)

Then the sample matrices **B**, **A** and **C** introduced in subsection 3.4 can be regarded as the IS samples of the random vectors \mathbf{x} , \mathbf{x}' and $\mathbf{x}_{\Box'i}$, and the IS estimator of V_i is given as:

Similarly, as $E \square \square \square I_{F^2} \square \square x = E \square I_{F^2} \square x_i \square \square \square$ and $E \square I_F \square \square x |_{\square i} \square \square E \square I_F \square x |_{\square i} \square$

 $|_{\Box^i} \Box \Box$, the total partial variance V_{Ti} can be derived as:

 $V_{Ti} \square \models \square_{IF2} \square \square \models \models \square \square 2 \square_{IF} | \mathbf{x}_{\square i} \square \square$ $\Box \Box I_{F2} \Box \Box \mathbf{x} \Box \Box \Box 12 \to \Box \Box I_{F2} \Box \mathbf{x}_{i} \Box \Box \Box \Box \to \mathbf{E} \to \Box \Box I_{F} \Box \Box \mathbf{x} \mathbf{x}_{| \Box i} \Box \Box \to \Box \Box I_{F}$ □ 12 E $\Box_{x x_i} \Box \mid \Box_i \Box \Box \Box$ $_{2} \qquad p x_{i} \square \square_{i'}$ 1 2 $n p x_k \square k \square$ 1 $p x_k \square_k \square$ $\square_{\mathbb{D}^1 h}$ $x_{k} \square = k \square h$ $x_{k} \square = k \square dx_{k} \square 2 \square R_{e} I_{F} \square x_{i} \square h x_{i}$ \square $\square_{R_n}I_F$ $\Box \Box^x$ $\Box \Box_{i'h x_i} \Box \Box_{idx_{ik}\Box} \Box_{1,k ih x^k} \Box_k \Box_h x_k \Box_k \Box_k \Box_k \Box_k \Box_k \Box_k$ $2 k^{\Box} \square_{R = \Box} I_{F} \square \square \mathbf{x} I_{F} \square \mathbf{x}_{i} \square \square h x p x_{ii} \square \square \square \square \square i_{i} h x_{i} \square \square i_{i} dx_{i} dx_{i} h x_{i} x_{kk}$ \square kk \square \square $h x_k \square k \square dx_k$ $\frac{1}{2}$ $\Box \Box x h x$ $\Box I_F \Box x_i \Box \Box 2I_F \Box \Box x I_F$ $\Box \Box_{R_n \Box_1} \Box h x$ $\Box I_F$ $\Box_{x_i} \Box$ $h x \Box h x_i \Box \Box_i$ $dx_i \square h x_k \square k \square dx_k$ $h x_i \square \square_i$ $h x_i \square \square_{ii} \square \square_i \square$ $i \square \square_i$ *k*□1 □ 12 \mathbf{E}_h $\Box \Box_{1n,k} i h$ $xp x_{kk} \square = _{kk} \square \square \square \square \square I_F \square x_h xp x_{ii} \square \square \square \square_{ii} \square I_F \square x_i \square h xp x_{ii} \square \square \square_{ii} \square I_F \square x_i$ $I_F \square \mathbf{x}_i \square h xp x_{ii} \square \square \square \square ii \square \square \square \square ii \square \square \square \square$ i (A7)

Then the sample matrices A and C can be regarded as the IS sample of the vectors x and

 \boldsymbol{x}_{i} , and the

i

 $2 \quad {}^{IS\,j\square 1} \bigsqcup {k} , k \, i$

(A8)

Appendix C: FORM estimators of the GRS indices

Assume that the random input vector follows independent Gaussian distribution with mean vector $\boldsymbol{\mu}$ $\Box \Box \Box_{1,2},...,\Box_n \Box^T$ and SD vector $\boldsymbol{\sigma} \Box \Box \Box \Box_{1,2},...,\Box_n \Box^T$. The first order Taylors series of the limit state Tfunction expanded at the MPP $\mathbf{x}^* \Box \Box x_1^*, x_2^*,..., x_n^* \Box$ is given as follows: n

$$z \square \square \mathbf{x} \square g \bigsqcup \mathbf{x}^* \bigsqcup \square \square a x_j \bigsqcup j \square x^*_j \bigsqcup \square a_0 \square \square a x_j$$
(A9)
$$j \square 1 \qquad j \square 1$$

where a_{j}^{a} indicates the partial derivatives of the g-function w.r.t. x_{j} at the MPP, and

 $a_0 \square g \square x^* \square \square \square a x_j^*$.

Then, based on the first line of Eq. (A5), the main partial variance V_i can be derived as:

$$V_{i} \square \square I_{F} \square \square \mathbf{x} I_{F} \square \mathbf{x}_{\square' i} \square \square \square p_{j} \square x_{j} \square dx_{j} \square \square \square p_{j} \square x_{j} \square dx_{j} \square \square p_{j} \square x_{j} \square dx_{j} \square \square P_{j2}$$

$$j_{\square} j_{\square} \square j_{\square} \square j_{\square} \qquad (A10)$$

$\Box \Pr \Box z \Box \Box x \Box 0 \cap z \Box x_{\Box_i} \Box \Box 0 \Box \Box P_i^2$

where $z \Box x \Box$ and ${}^{z} \Box x_{\Box_{i}} \Box$ are two linear function of the vector x and ${}^{x}_{\Box_{i}}$, respectively, thus can be regarded as two correlated Gaussian random variables with covariance $\Box_{zm^{2}} \Box_{i}^{a_{2}} \Box_{i}^{c_{2}}$. $z \Box x \Box$ and

 $z \square \mathbf{x}_{\square i} \square$ have the same mean value $\square_z \square \square a_0 \square^{n_j \square 1} a_j \square_j$ and the same SD $\square_z \square^{\square} \square^{n_j \square 1} a^{2 2_j} \square_j$. Then *V_i* can be estimated by:

$$\hat{V}_{i} \square \square_{2} \square [0,0]; \square_{m}, \square \square_{m} \square \hat{P}_{f}^{2}$$
(A11)

where $\Box_2 \Box_{[0,0]}; \Box_m, \Box_m \Box$ indicates the bivariate joint CDF of Gaussian distribution with mean vector

\Box \Box z_{2zm2} \Box

 $\Box_m \Box \Box \Box_z, z \Box \text{ and covariance matrix } \Box \Box_m \Box \Box_2 \qquad z \Box \text{ calculated at the point [0,0]}.$ $\Box \Box \Box_{zm} z \Box$

Similarly, based on the first line of Eq.(A7), the total partial variance V_{Ti} can be approximated by:

n

$$V_{Ti} \square P_{j} \square \square I_{F} \square \square x I_{F} \square x_{i} \square \square \square p_{j} \square x_{j} \square dx_{j} \square \square \square p_{j} \square x_{j} \square dx_{j} \square \square$$

$$j_{\square} j_{\square} \square j_{\square} \square j_{I} \square I_{I}$$
(A12)

n

 $\Box P_f \Box \Pr \Box z \Box \Box x \Box 0 \cap z \Box x_i \Box \Box 0 \Box$

where $z \Box x \Box$ and $z \Box x_i^{\dagger} \Box$ are linear functions of x and x_i^{\dagger} , thus are also two correlated Gaussian

random variables with covariance $\Box_{z_t}^2 \Box \Box_{j_{\square} \Box_{1,j_i}}^n a_{j_i}^2 \Box_{j_i}^2$. Then, based on Eq. (A12), the total partial

variance V_{Ti} can be further derived as:

$$\hat{V}_{T_{t}} \square \hat{P}_{f} \square \square_{2} \square [0,0]; \square_{t}, \square_{t} \square$$
where $\square_{t} \square \square_{m}$ and $\square \square_{t} \square_{222} \square_{222} \square \square$.
$$\square_{2t} \square_{2} \square$$
(A13)