Appendix A: The classical AK-MCS method

The Kriging method regards the g-function as an n-dimensional Gaussian random field, which reads:

$$
\begin{equation*}
g \square \square x \square f x \square \square^{T} \beta \square z \square \square x \tag{A1}
\end{equation*}
$$

where $\boldsymbol{f} \boldsymbol{x} \quad \square_{T} \boldsymbol{\beta}$ refers to an linear regression model with a set of functional basis $\boldsymbol{f} \square \square f_{1}, \ldots, f_{d} \square$, $Z \square \square x$ indicates a n-dimensional Gaussian random field with zero mean and variance $\square_{g}{ }^{2}$. The covariance function of the random field for any two point $\boldsymbol{x}^{\square i \square}$ and $\boldsymbol{x}^{\square j \square}$ is given as:

$$
\begin{equation*}
C_{88} \square_{x \square \square i}, x \square \square \square \square_{q_{2} R} \square_{x \square \square \square x \square \square j} \square \tag{A2}
\end{equation*}
$$

where $R \square_{\square_{\square i}}^{x_{\square} x_{\square \square_{j}}} \square$ is the autocorrelation function, and the most commonly used one is the exponential one given by:

$$
\begin{aligned}
& \text { (A3) } \square_{n} \square
\end{aligned}
$$

and \square_{k} is a parameter measuring the strength of the autocorrelation. Then given a set of N_{0} training ${ }_{T}$ samples $\square \boldsymbol{x}^{\square \square_{1}}, \ldots, x^{\square N_{0} \square} \square$ and the corresponding values $z \square \square_{g} \square_{x^{\square} \square_{1}} \square, \ldots, g \square_{x^{\square N_{0} \square}} \square \square$ of the gfunction, the mean value $\square_{g^{-}} \square \square x$ and the variance $\square_{g^{2}}{ }^{2} \square x \square$ for a new point x conditional on these training samples are given as [24]:

where \mathbf{R} is the correlation matrix of these N_{0} training samples, $\boldsymbol{r} \boldsymbol{x} \square \square$ refers to the vector of correlation functions between \boldsymbol{x} and the N_{0} training samples, \mathbf{F} indicates the regression matrix
computed by $F_{i j} \square f_{j} \square x^{\square \square i} \square$ with $i \square 1 ’ \ldots, N$ and $j \square 1, \ldots, d, \boldsymbol{u} x \square \square \square \mathbf{F} \mathbf{R}^{T \square 1} \boldsymbol{r} \boldsymbol{x} \square \square \square f x \square \square$ and
the least square estimates of the regression coefficients are computed by $\hat{\boldsymbol{\beta}} \square \square \mathbf{F} \mathbf{R} \mathbf{F} \mathbf{F} \mathbf{R}^{T \square 1} \square_{\square 1}^{{ }_{\square \square 1}} \boldsymbol{z}$.

Then $\square_{s} \square x \square$ refers to the Kriging surrogate model, and $\square_{s^{2}} \square x \square$ indicates the mean square error
(MSE) of the estimator $\square_{s^{i}} \square_{x} \square$. It holds that $\square_{s^{2}} \square_{x^{\square \square_{j}}} \square \square^{g} \square_{x^{\square \square_{j}}} \square$ and $\square_{g^{2}} \square_{x^{\square \square_{j}}} \square \square 0$
for $j \square 1,2, \ldots, N_{0}$

The AK-MCS procedure for estimating the failure probability is summarized as follows [24]:
Step 1: Generate a MC population \mathbf{W} of N (N is large, i.e., 1e5) samples of the input vector. Randomly chose N_{0} (N_{0} is small, i.e., 12) samples from the population \mathbf{W}. Estimate the corresponding gfunction values for these N_{0} training samples, and attribute these N_{0} samples to the training population \mathbf{W}_{t}.
Step 2: Train the Kriging model based on the training population \mathbf{W}_{t} using the DACE toolbox [24].

Step 3: Generate the Kriging prediction $\square_{g^{\prime}} \square^{x_{\square \square}} \square_{\text {and }} \square_{g^{2}} \square^{x_{\square \square \cdot}} \square$ for each of the remaining $N-$ N_{0} MC samples based on the well-trained Kriging model, and then estimate the value of the U function for each of these $N-N_{0}$ MC samples by $\left.U_{j} \square^{U} \square_{\boldsymbol{x}^{\square \square j}} \square \quad\right|_{g^{2}} \square_{\boldsymbol{x}^{\square \square j}} \square / \square_{g^{2}} \square_{\boldsymbol{x}^{\square \square_{j}}}$ \square. If $\min ^{N}{ }_{j \square 1} U_{j} \square 2$, then add the sample with the minimum U value to the training population \mathbf{W}_{t}, let $N_{0}=N_{0}+1$, go to step 2 ; otherwise, estimate the failure probability as well as the C.O.V. of the estimate based on the Kriging predictions of the N MC samples contained in \mathbf{W}.

Step 4: If the C.O.V. of the estimate of failure probability is greater than 0.05 , then update \mathbf{W} with a new MC population, and go to step 3; otherwise, end the procedure.

Appendix B: IS Estimators of the GRS indices

Let x_{j} indicate the random replication of $x_{j}\left(j \square 1^{2,}, \ldots, n\right), \boldsymbol{x}_{\square}{ }^{\prime} i \square \square_{x^{\prime}}, \ldots, x_{i \square 1}, x x_{i}, i_{\square 1}, \ldots, x_{n} \square$,
 ${ }_{i} \square \mid x_{i} \square \square$ and

 Do [

$h x_{k} \square{ }_{k} \square{ }_{k} \square{ }_{k} \square_{\mathrm{d} x x_{x} \mathrm{~d} k}$ प】

 $\square_{\mathrm{d} x x_{k} \mathrm{~d} k}$ 日

(A5)
Then the sample matrices \mathbf{B}, \mathbf{A} and \mathbf{C} introduced in subsection 3.4 can be regarded as the IS samples of the random vectors $\boldsymbol{x}, \boldsymbol{x}$ and $\boldsymbol{x}_{\square}{ }^{\prime}{ }^{\prime}$, and the IS estimator of V_{i} is given as:

${ }^{\wedge} \square 1 \square_{N / s} \square I_{I F}-\square_{b_{j}} \square \square_{n} \quad h_{k k} \quad-\quad$ - $\square \square_{b b_{j k k}}$

${ }_{\mathrm{a} i} \mathrm{D} \overline{\mathrm{a}}$, the total partial variance $V_{T i}$ can be derived as:

 $\square_{x x_{i}} \square_{\mid \square i \square \square} \square$

$$
\begin{aligned}
& 12 \quad{ }_{n} p x_{k} \square_{k} \square \quad 1 \quad{ }^{2} \quad{ }^{2} p x_{i} \square \square_{i}
\end{aligned}
$$

2	$p x_{i} \boldsymbol{\square} \square_{i} \quad 2$ p $x_{i} \square \square_{i}$	$p x_{i} \square \square_{i p} x_{i} \square \square_{i} \square$

$\square_{x_{i}} \square$
${ }^{\prime} h x \square h x_{i} \square \square_{i}$ $\mathrm{d} x_{i} \square_{h x_{k}} \square_{k} \square \mathrm{~d} x_{k}$

IS estimator of $V_{T i}$ is derived as:

$2{ }^{I S j \square 1 \square \square^{k}, k i}$

Appendix C: FORM estimators of the GRS indices

Assume that the random input vector follows independent Gaussian distribution with mean vector $\boldsymbol{\mu}$
 function expanded at the MPP $\boldsymbol{x}^{*} \square \square x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots, x_{n}{ }^{*} \square$ is given as follows:

[^0]
(A9)
j ㅁ $j \square 1$
where ${ }_{j}$ indicates the partial derivatives of the g-function w.r.t. x_{j} at the MPP, and $a_{0} \square g \square_{x^{*}} \square \square \square a x_{j}^{*}$.
$j \square 1$
Then, based on the first line of Eq. (A5), the main partial variance V_{i} can be derived as:
\[

$$
\begin{align*}
& j \square 1 \quad j \square \square 1, j i \tag{A10}
\end{align*}
$$
\]

where $z \square x \square$ and ${ }^{z} \square x_{\square}{ }^{\prime} \square$ are two linear function of the vector \boldsymbol{x} and ${ }^{\boldsymbol{x}}{ }_{\square^{\prime} i}$, respectively, thus can be regarded as two correlated Gaussian random variables with covariance $\square_{z m}{ }^{2} \square^{a}{ }_{i}{ }^{2} \square_{i}{ }^{2} . z \square x \square$ and

${ }^{z} \square_{x_{\square} i} \square$ have the same mean value $\square_{z} \square \square a_{0} \square^{n}{ }_{j \square 1} a_{j} \square_{j}$ and the same SD $\square_{z}{ }^{\square} \square^{n}{ }_{j \square 1} a^{2}{ }_{j} \square_{j}$. Then V_{i} can be estimated by:
where $\square_{2} \square[0,0] ; \square_{m}, \square_{m} \square$ indicates the bivariate joint CDF of Gaussian distribution with mean vector

प $\square_{z 2 z m 2}$ प

Similarly, based on the first line of Eq.(A7), the total partial variance $V_{T i}$ can be approximated by:

j 1 j $\square \square 1, j i$

where $z \square x \square$ and ${ }^{z} \square x_{i} \square$ are linear functions of \boldsymbol{x} and ${ }^{\boldsymbol{x}}$, thus are also two correlated Gaussian
random variables with covariance $\square_{z_{t}{ }^{2}} \square^{n_{j \square \square 1, j i}} a_{j}^{2} \square_{j}^{2}$. Then, based on Eq. (A12), the total partial
variance $V_{T i}$ can be further derived as:

$$
\begin{equation*}
\hat{V_{T i}} \square \hat{P_{f}} \square \mathrm{D}_{2} \square[0,0] ; \square_{t}, \square \tag{A13}
\end{equation*}
$$

$\square \square_{z t} \square_{z}$ 口

[^0]: $n \quad n$

