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Online Appendix: The Demand Model and Model Identification 

 

The Demand Model 

 

Random Coefficients 

For our demand random coefficient logit model, we follow the specifications in the framework 

of Berry, Levinsohn and Pakes (1995; see also Nevo 2000), BLP hereafter. The term 𝜀𝑖𝑗𝑡 in 

Equation 1 follows an i.i.d. type I extreme value distribution. We assume that the random 

coefficients 𝛽𝑖 , 𝛼𝑖  ,and 𝛾𝑖 follow multivariate normal distributions  

(A1)  (
 𝛽𝑖

𝛼𝑖

𝛾𝑖

) = (
 𝛽
𝛼
𝛾

) + ∑ 𝑣𝑖     𝑣𝑖~𝑃𝑣(𝑣)   

where 𝛽, α, and γ measure the mean preference that is common among all consumers; 𝑣𝑖 

represents the unobserved variation of preferences assumed to have a standard multivariate 

normal distribution 𝑃𝑣(𝑣); and Σ is a [(K + 1) × (1 + K)] scaling matrix of the random 

coefficients that need to be estimated. 

 Let 𝜃1 = (𝛽,𝛼,𝛾) be the vector containing the linear parameters and 𝜃2 = Σ be the 

nonlinear parameters. Combining Equations 1 and A1, we have the indirect utility expressed as 

in Equation A2, where δjt refers to the mean utility that is common to all consumers. The term μijt 

+ εijt depicts a mean-zero heteroskedastic deviation from the mean utility. 

(A2) 𝑈𝑖𝑗𝑡 = 𝛿𝑗𝑡(𝑋𝑗𝑡 , 𝑃𝑗𝑡, 𝑆𝑗𝑡, 𝜉𝑗𝑡; 𝜃1) + 𝜇𝑖𝑗𝑡(𝑋𝑗𝑡, 𝑃𝑗𝑡, 𝑆𝑗𝑡, 𝑣𝑖; 𝜃2) + 𝜀𝑖𝑗𝑡 

𝛿𝑗𝑡 = 𝑋𝑗𝑡𝛽 + 𝛼𝑃𝑗𝑡 + 𝛾𝑆𝑗𝑡 + 𝜉𝑗𝑖        𝜇𝑖𝑗𝑡 = (𝑋𝑗𝑡 , 𝑃𝑗𝑡, 𝑆𝑗𝑡) ∗ ∑𝑣𝑖
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Consumer Choice and Market Share 

We normalize the indirect utility of nonpurchase decision to zero, 𝑈𝑖0𝑡 = 𝜀𝑖0𝑡. Because we define 

𝜀𝑖𝑗𝑡 as having a type I extreme value distribution, we have a closed-form solution for the 

probability that a consumer would purchase brand j in market t:  

(A3) 𝑃𝑟𝑖𝑗𝑡(𝛿𝑗𝑡|𝜃2) =
exp(𝛿𝑗𝑡+𝜇𝑗𝑖𝑡)

1+∑ exp(𝛿𝑚𝑡+𝜇𝑚𝑖𝑡)𝐽
𝑚=1

            

Aggregating over consumers, we can specify the market share of brand j in market t as follows: 

(A4) 𝑆𝑗𝑡(𝛿𝑗𝑡|𝜃2) = ∫
exp(𝛿𝑗𝑡+𝜇𝑗𝑡)

1+∑ exp(𝛿𝑚𝑡+𝜇𝑚𝑡)𝐽
𝑚=1

𝑑𝑃𝑣(𝑣)  = ∫ 𝑃𝑟𝑖𝑗𝑡 𝑑Ψ(𝛼𝑖 , 𝛾𝑖 |𝜃2) 

where Ψ is the joint distribution of consumer characteristics, and 𝜃2 is a vector of parameters for 

this joint distribution, mainly the heterogeneity variance. Solutions to the integrals in Equation 

A4 can be obtained by Monte Carlo simulation. The simulated integrals through N Monte Carlo 

draws of 𝑣 are given by 

(A5)  𝑆𝑗𝑡(𝛿𝑗𝑡|𝜃2) ≈
1

𝑁
∑  𝑃𝑟𝑖𝑗𝑡

𝑁
𝑖=1  

Each consumer has a different price (tax) elasticity for each individual brand. Equations 

A6 and A7 show the own- and cross-price (tax) elasticities, respectively:  

(A6)           𝜂𝑖𝑗𝑡 =
𝜕𝑠𝑗𝑡

𝜕𝑃𝑘𝑡
∙

𝑃𝑘𝑡

𝑠𝑗𝑡
= {

𝑃𝑗𝑡

𝑠𝑗𝑡
∫ 𝛼𝑖 𝑆𝑖𝑗𝑡(1 − 𝑆𝑖𝑗𝑡)𝑑𝑃𝑣(𝑣)         𝑓𝑜𝑟 𝑗 = 𝑘,

−𝑃𝑘𝑡

𝑠𝑗𝑡
∫ 𝛼𝑖 𝑆𝑖𝑗𝑡𝑆𝑖𝑘𝑡𝑑𝑃𝑣(𝑣)                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             

 

(A7)              𝜍𝑖𝑗𝑡 =
𝜕𝑠𝑗𝑡

𝜕𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥𝑘𝑡
∙

𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥𝑘𝑡

𝑠𝑗𝑡
= {

𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥𝑗𝑡

𝑠𝑗𝑡
∫ 𝛾𝑖 𝑆𝑖𝑗𝑡(1 − 𝑆𝑖𝑗𝑡)𝑑𝑃𝑣(𝑣)         𝑓𝑜𝑟 𝑗 = 𝑘,

−𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥𝑘𝑡

𝑠𝑗𝑡
∫ 𝛾𝑖 𝑆𝑖𝑗𝑡𝑆𝑖𝑘𝑡𝑑𝑃𝑣(𝑣)                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Identification 

Prices are potentially correlated with unobserved product characteristics and/or demand shocks. 

Following the literature, we include several sets of instruments into the estimation to control for 

price endogeneity and to generate moment conditions to identify coefficients. Instruments that 

we adopt include cost shifters of producing CSDs, price of sugar, electricity, crude oil, 

aluminum, and manufacturing wage rates (BLP; Nevo 2001). We collect prices of crude oil and 

electricity from the U.S. Energy Information Administration. Sources of sugar prices and 

aluminum prices are from the Economic Research Service, United States Department of 

Agriculture. Manufacturing wage rates are from the Bureau of Labor Statistics. Furthermore, we 

interact cost shifters with firm-specific dummies following Villas-Boas (2007). The rational is 

that different firms may use inputs differently. We also include Hausman-type instruments (i.e., 

products’ own prices in other markets) (Hausman and Taylor 1981). The intuition is that the 

prices of the same brand in different markets are correlated (due to the common production cost) 

but are uncorrelated with market specific demand shocks.  

 We estimate the demand model specified in Equation 1 using a nonlinear generalized 

methods of moments (GMM) estimator. Following BLP, we use the nested fixed point maximum 

likelihood algorithm approach to estimate the model parameters. Let IV be the full set of 

instrumental variables satisfying  

(A8)               𝑔(𝛿) = 𝐸[𝐼𝑉′𝜉] = 0 

Then, let Φ be the GMM weighting matrix (a consistent estimate of 𝐸[IV′ξξ′IV]−1); the 

estimated parameters can be solved through the following minimization problem: 

(A9)                   
𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝜉′𝐼𝑉Φ𝐼𝑉′𝜉)

𝜃          
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