
Posterior Predictive Checks of Model Fit 

 As parameter estimates from a descriptively inadequate model would be uninformative, 

posterior predictive checks (Gelman, Meng, & Stern, 1996) were used to evaluate the model’s 

absolute goodness-of-fit. These checks compare the observed data to data sets predicted using 

the posterior distributions of the cognitive model parameters, which should closely approximate 

the observed data if the model fits well. As the predicted data sets are generated using the entire 

posterior distributions of model parameters, plots that describe the uncertainty of predicted data 

values are directly representative of uncertainty about model parameter estimates and the data 

generating process. 

 Joint cumulative distribution function plots (Figure S1a) display the cumulative 

probability of an “X” or “O” response over time for empirical data and posterior predictive data 

(averaged across participants) separately for each stimulus type and trial type (“go” vs. “signal” 

trials). Five RT quantiles (.10, .30, .50, .70, .90) of the empirical (circles) and predictive (dots) 

data are also plotted in order to better visualize misfit. In general, with the potential exception of 

“O” stimulus signal-respond trials in the ADHD group, the model appears to display excellent fit 

to correct RT. However, although the model describes overall accuracy rates well, fits to error 

RTs are much poorer than those to correct RTs, with marked over-prediction of slow error 

response quantiles. Given the relatively low number of error trials, this pattern of misfit is 

expected; the likelihood function used to fit the model applies more weight to the most common 

trial types, and the model can therefore be expected to describe these trials better than trials that 

are rare, such as errors.  

However, the pattern of misfit indicates that the model is struggling to produce the fast 

error RTs found in this data set, which is consistent with two possibilities. First, it is possible that 



some of the children’s RTs were fast guesses rather than products of the race process. As these 

trials would be fast and have chance accuracy, the race model is unable to account for them, and 

therefore predicts error RT values that are slightly longer than the true values, which are 

contaminated by the fast guessing process. Second, it is possible that the misfit is simply due to 

the fact that the τgo parameter was not allowed to vary by match vs. mismatch. Regardless, as 

there were relatively few error responses in the task, the misfits in error trials are unlikely to 

impact inferences made with the model parameters of interest. 

 Figures S1b and S1c assess whether the model can account for two key ways in which 

performance on stop-signal trials varies with changes in SSD. Figure S1b displays the median 

signal-respond RTs (SRRTs) for both correct and error responses at eight bins of SSD. These 

bins were absolute, in that the quantile values that determine them were established by 

collapsing across the whole group’s SSD values. Empirical data is displayed as black lines and 

dots, while posterior predictive data is displayed as violin plots, which are box plots of posterior 

predictive data values surrounded by kernel density plots of the same values. The density plots 

represents relative certainty about the location of the predicted medians. Consistent with 

assumptions of the race model, both groups’ correct SRRTs increased as SSD increased. The 

posterior predictive data indicates that, despite some over-prediction of medians at short SSDs, 

the current model-based analysis generally captured this increasing pattern well. Error SRRTs, 

however, did not show the expected increase with SSD, although the model generally captured 

the absolute values of these SRRTs well. 

Figure S1c displays the “inhibition functions” of both groups, which show the probability 

of a response, P(response), at eight bins of SSD. Unlike the CE-RT plots, these bins were 

relative, in that the quantiles that determine them were established separately for each individual 



based on their unique distribution of SSDs. The relative binning procedure allows the expected 

pattern, in which P(response) increases as the SSD increases, and therefore leaves less time for 

the stop process to win the race, to be more clearly represented. The model appeared to capture 

both the general pattern of SSD-related increase and the absolute values of P(response) for most 

SSD bins well. 

 Overall, the ex-Gaussian race model captured general patterns in the behavioral data 

(e.g., accuracy, hallmark SSD effects) very well, but displayed a poorer description of error RTs, 

possibly because of the fact that we constrained τgo to be the same between match and mismatch, 

or because of an un-modeled fast-guessing process. As the model effectively explains key 

features of behavioral performance, and as errors were relatively rare in this data set, it is 

reasonable to conclude that this misfit will not confound the main analyses of interest, which are 

aimed at assessing general parameter differences between the groups. Furthermore, as we found 

that there were no substantive differences between the results of the main analysis and our 

separate analysis of the high-accuracy subset of participants with a model that did not include 

error RTs (described below), we concluded that the effects of interest were unlikely to be 

confounded by the error misfits. 

Secondary Model Analysis with High-Accuracy Participants 

In the secondary analysis, we applied the traditional ex-Gaussian race model, in which 

only correct RTs are considered and mismatch RT distribution parameters are not estimated 

(Matzke, Dolan, Logan, Brown, & Wagenmakers, 2013; Matzke, Love, & Heathcote, 2016), to a 

high-accuracy (>.95 accuracy rate) subset of participants. The conservative accuracy exclusion 

criteria removed 42% of the ADHD group (n = 88) that was included in the main analysis, and 

11% of the Control group (n = 11). The same priors and estimation procedures as those described 



above were used to fit this model, and the analysis strategies were the same as those described in 

the text.  

Posterior medians and Bayesian p-values for differences in all group-level model 

parameters are displayed in Supplemental Table 1. As demonstrated by these values, results from 

the secondary analysis are similar to those of the main analysis. This analysis replicated group 

effects of PGF, PTF and τstop, although evidence for τstop differences was weaker, p=.165. The 

weakness of evidence for this effect, and the generally lower estimates of PGF and PTF in the 

ADHD group relative to the main analysis, are likely due to the fact that a large portion of this 

group, and potentially the individuals with the most severe impairment, were excluded. 

Consistent with the findings of greater σgo-match and τgo in the main analysis, children with ADHD 

also displayed higher σgo and τgo. Finally, in contrast with the main analysis, there was only weak 

evidence for greater between-subjects variability in τstop in the ADHD group, p=.127, and little 

evidence for greater PTF, p=.443. Removal of participants with the most severe impairment 

would be expected to reduce between-subject variability in these processes, however, and this 

pattern therefore suggests that the between-subject variability effects in the main analysis were 

driven by individuals with the greatest impairment. 

  

 

 

 

 

 

 



Supplemental Figure 1. Empirical data plotted against posterior predictive data from the model. 
a) Joint cumulative distribution function plots of the probability of X (solid line) and O (dotted 
line) responses for empirical (gray, circles) and posterior predictive (black, dots) data, by 
stimulus type and trial type, b) Medians of correct and incorrect signal-respond RTs (SRRTs) by 
group average SSD quantile for empirical (black) and posterior predictive (gray violin plots) 
data. c) Probability of response by relative SSD quantile (i.e., quantile for each individual 
participant) for empirical (black) and posterior predictive (gray violin plots) data. 
 

 



Supplemental Table 1. Posterior medians of all group-level parameter values and Bayesian p-
values for each group difference in the secondary analysis. Group mean parameters for PTF and 
PGF have been transformed back to the probability scale for clarity, and technically reflect the 
medians, rather than the means, of the group distributions. For the σstop, and τstop parameters, 
population means and SDs (denoted with “Pop.”) are reported in addition to the means and SDs 
for the truncated normal distributions. Due concerns about severe truncation at 0 (outlined in the 
text) the population parameters of σstop, and τstop were used to make inferences about group 
differences. 

 
Group Means 

Parameter Control Post. Median ADHD Post. Median Bayesian p-value 

µgo .611 .644 .034 

σgo .110 .129 .003 

τ go .169 .190 .033 

µstop .164 .175 .043 

σstop .016 .015 .456 

τstop .029 .029 .499 

σstop Pop. .038 .036 .444 

τstop Pop. .073 .089 .165 

PGF .019 .034 <.001 

PTF .128 .208 .001 

  
Group SDs 

Parameter Control Post. Median ADHD Post. Median Bayesian p-value 

µgo .118 .124 .323 

σgo .035 .051 .001 

τ go .070 .076 .257 

µstop .035 .028 .074 

σstop .038 .038 .486 

τstop .076 .097 .105 

σstop Pop. .026 .026 .461 

τstop Pop. .051 .064 .127 

PGF .410 .483 .084 

PTF .673 .686 .443 
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