Supplemental Materials

- I. Additional Measures (affirmative action and implicit associations) and Results
- II. Sample (Mturk versus students) Effects
- III. Stein and Johnson Analyses
- IV. Results of full factorial (including 3- and 4-way interactions) ANCOVAs for dependent variables, controlling for conservatism
- V. Results of full factorial (including 3- and 4-way interactions) ANOVAs (*not* controlling for conservatism

I. Additional Measures

Support for Affirmative Action

Based on our original goal of examining the effects of the election of the first woman U.S. President, we assessed attitudes toward affirmative action for women to determine whether support for it increased after Clinton's election (following Kaiser, Drury, Spalding, Cheryan, & O'Brien, 2009's finding that support for affirmative action decreased following Mr. Obama's election). Nine items adapted from prior research (Konrad & Spitz, 2003; Kravitz & Platania, 1993; Swim & Miller, 1999) were used (e.g., "Affirmative action programs that encourage the hiring and promotion of women are a good idea"; $\alpha = .91$). Ratings were made using a 1 (strongly disagree) to 7 (strongly agree) scale.

Implicit Association Test and Reactions to Bias Feedback

Based on our original goal of examining the effects of Clinton's election, participants also completed a gender (men/women – career/family) Implicit Association Test and rated their

reaction to feedback that the test showed they were gender biased (see Lybarger & Monteith, 2011, for a parallel examination of denying implicit race bias following Obama's election). After Clinton's loss, this measure was no longer relevant to our hypotheses. However, to maintain consistency across waves of data collection, we retained it in the procedure, and performed purely exploratory analyses (see below).

Results

Support for Affirmative Action

As conservatism increased, support for gender-based affirmative action policies decreased, F(1, 1283) = 141.74, p < .001, $\eta^2 = .099$ (.075, .126). Not surprisingly, men (M = 4.20, SE = .05) supported the policies less than women (M = 4.62, SE = .04), F(1, 1283) = 48.96, p < .001, $\eta^2 = .037$ (.022, .055). The effect for candidate preference contributed additional variance with less favorable attitudes among Trump than Clinton supporters, F(1, 1283) = 27.70, p < .001, $\eta^2 = .021$ (.010, .036).

Implicit Association Test (IAT)

IAT scores were computed following recommended procedures (Greenwald, Nosek, & Banaji, 2003), with higher values indicating greater ease of pairing men with careers and women with family than the reverse (M = .38, SD = .37). Participants also provided ratings on 7-point scales for five items: The test is valid; my results on the test are accurate; whether I like my test results or not, it captures something important about me; this test reflects something about my automatic thoughts and feelings concerning men and women; this test does not reflect anything about my thoughts or feelings, unconscious or otherwise (reverse-scored) ($\alpha = .90$, M = 4.28, SD = 1.39).

Correlations between the IAT indexes and sexism measures are shown in Table 1.

Although some correlations were significant, the magnitudes were small.

Table 1: Correlations between IAT indexes and sexism measures.

	IAT Score	IAT Feedback Reaction
Modern Sexism	07**	02
Benevolent Sexism	03	.19***
Hostile Sexism	06*	.08**

Note: Ns range from 1285 - 1301 due to missing data (e.g., too errors when taking the IAT). * p < .05, ** p < .01, p < .001.

Following the analytic approach described for other dependent variables (see text of main manuscript), the IAT variables were predicted using a 2 (candidate preference: Clinton vs. Trump) x 2 (participant gender: men vs. women) x 2 (participant pool: undergraduate vs. MTurk) x 3 (when data were collected: pre-election, post-election, post-inauguration) between-participants ANCOVA, with conservatism as the covariate. No three- or four-way interactions were obtained, so we trimmed the model to include only main effects and 2-way interactions.

Analysis of IAT scores revealed a main effect for gender, F(1, 1273) = 41.55, p < .001, $\eta^2 = .03$ (.02, .05) with women (M = .43, SD = .34) scoring higher than men (M = .29, SD = .40). No other effects were significant. Analysis of the IAT accuracy index revealed a main effect for the covariate, conservatism, F(1, 1285) = 20.92, p < .001, $\eta^2 = .02$ (.01, .030). IAT feedback was evaluated as more accurate and valid as conservatism increased, although this was a weak relation, r = .09. No other effects were significant.

II. Sample Effects (Mturk Versus Students)

Hostile Sexism

A main effect for sample was obtained, F(1, 1282) = 13.97, p < .001, $\eta^2 = .011$ (.003, .002). The undergraduate participants (M = 2.71, se = .03) scored significantly higher on hostile sexism than MTurk participants (M = 2.55, se = .03).

Modern Sexism

A small but significant interaction between candidate preference and sample was obtained, F(1, 1283) = 9.49, p = .002, $\eta^2 = .007$. Undergraduate Clinton supporters (M = 3.06, se = .05) scored significantly higher on modern sexism than MTurk Clinton supporters (2.85, se = .05), F(1, 1283) = 8.63, p = .003, $\eta^2 = .007$ (.001, .016). In contrast, undergraduate Trump supporters (M = 3.54, se = .07) and MTurk Trump supporters (3.68, se = .07) scored similarly, F(1, 1283) = 2.51, p = .11, $\eta^2 = .002$ (.000, 008).

Affirmative Action

As with modern sexism, we found a significant interaction between candidate preference and sample, F(1, 1283) = 15.61, p < .001, $\eta^2 = .012$ (.004, .024). Undergraduates Clinton supporters (M = 4.51, se = .06) favored affirmative action less than Mturk participants (M = 4.75, se = .05), F(1, 1283) = 9.87, p = .002, $\eta^2 = .008$ (.002, .017). In contrast, undergraduate Trump supporters (M = 4.31, se = .08) favored affirmative action more than MTurk participants (M = 4.07, se = .07), F(1, 1283) = 6.33, p = .012, $\eta^2 = .005$ (.001, .013).

Personal Discrimination

We found a main effect for sample, F(1, 1283) = 14.20, p < .001, $\eta^2 = .011$ (.003, .022), with MTurk participants (M = 3.51, se = .08) reporting greater personal discrimination than undergraduate participants (M = 3.09, se = .08).

Group Discrimination

As with personal discrimination, MTurk participants (M = 4.97, SD = 2.39) reported greater group discrimination than undergraduate participants (M = 4.16, SD = 2.24), F(1, 1283) = 16.68, p < .001, $\eta^2 = .013$ (.005, .025).

III. Stein and Johnson Analyses

Although we did not have enough Jill Stein (Green Party; n = 75) and Gary Johnson (Libertarian Party; n = 168) supporters to examine the effects of time along with gender and candidate preference (e.g, one Stein cell in the 3-way factorial included only six participants), we could compare scores on the dependent variables as a function of candidate preference and gender, while controlling for conservatism. Thus, all dependent measures were predicted using 2 (candidate: Stein vs. Johnson) X 2 (gender: man vs. woman) ANCOVAs, controlling for conservatism.

Benevolent Sexism

Conservatism was unrelated to benevolent sexism, F(1, 237) = 1.04, p = .15, $\eta^2 = .004$ (.000, .028), as was candidate preference, F(1, 237) = 2.46, p = .12, $\eta^2 = .011$ (.000, .042). Men (M = 2.80, se = .08) scored higher on benevolent sexism than women (M = 2.54, se = .06), F(1, 237) = 6.49, p = .011, $\eta^2 = .027$ (..003, .069).

Hostile Sexism

Conservatism was positively related to hostile sexism, F(1, 237) = 25.89, p < .001, $\eta^2 = .098$ (.046, .161). There was a weak trend for Johnson supporters (M = 2.80, se = .06) to score higher on hostile sexism than Stein supporters (M = 2.55, se = .10), F(1, 237) = 4.65, p = .032, $\eta^2 = .019$ (.001, .057). Finally, men (M = 2.97, se = .08) endorsed hostile sexism more than women (M = 2.38, se = .07), F(1, 237) = 30.20, p < .001, $\eta^2 = .113$ (.057, .178).

Modern Sexism

Conservatism was positively related to modern sexism, F(1, 237) = 20.57, p < .001, $\eta^2 = .080$ (.033, .139), but candidate preference showed little relation, F(1, 237) = .70, p = .403, $\eta^2 = .003$ (.000, .025). Men (M = 3.63, se = .11) endorsed modern sexism more than women (M = 2.88, se = .09), F(1, 237) = 27.94, p < .001, $\eta^2 = .100$ (.051, .169).

Affirmative Action

Conservatism was a significant covariate, F(1, 237) = 16.71, p < .001, $\eta^2 = .066$ (.024, .122). The relation between candidate preference and support for affirmative action was not significant, F(1, 237) = 3.39, p = .07, $\eta^2 = .014$ (.000, .048). Men (M = 3.96, se = .11) supported affirmative action less than women (M = 4.65, se = .09), F(1, 237) = 23.28, p < .001, $\eta^2 = .089$ (.039, .150).

Personal Discrimination

The only significant effect was for gender, with women (M = 4.29, se = .17) reporting more personal discrimination than men (M = 2.43, se = .21), F(1, 237) = 48.41, p < .001, $\eta^2 = .170$ (.102, .240).

Group Discrimination

As with personal discrimination, the only significant effect was for gender, with women (M = 5.92, se = .16) reporting more personal discrimination than men (M = 2.87, se = .20), F(1, 237) = 143.48, p < .001, $\eta^2 = .377$ (.299, .445). Note that the magnitude of this effect was much larger compared to personal discrimination, with patterns supporting the classic personal-group discrimination discrepancy.

System-justifying Beliefs

Higher conservatism associated with greater system justification, F(1, 237) = 12.64, p < .001, $\eta^2 = .051$ (.015, .102). In addition, Stein supporters (M = -.31, se = .11) endorsed system justifying beliefs less than Johnson supporters (M = .13, se = .07), F(1, 237) = 11.56, p = .001, $\eta^2 = .046$ (.012, .097).

IV. Results of full factorial (including 3- and 4-way interactions) ANCOVAs for dependent variables, controlling for conservatism

	Modern Sexism			Benevolent Sexism			Hostile Se	xism	Personal Discrimination				Group Discrimination			System Jus	stification	Affirmative Action			
			Partial Eta			Partial Eta			Partial Eta			Partial Eta			Partial Eta			Partial Eta			Partial Eta
Source	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared
Corrected Model	37.007	0.000	0.411	9.387	0.000	0.150	33.596	0.000	0.388	18.464	0.000	0.258	49.259	0.000	0.481	13.964	0.000	0.208	26.266	0.000	0.331
Intercept	745.835	0.000	0.369	1201.357	0.000	0.486	816.918	0.000	0.391	458.329	0.000	0.264	825.753	0.000	0.393	54.038	0.000	0.041	3181.144	0.000	0.714
Csnvatism	139.264	0.000	0.099	68.542	0.000	0.051	151.738	0.000	0.107	6.563	0.011	0.005	4.988	0.026	0.004	93.433	0.000	0.068	137.350	0.000	0.097
Sample	0.307	0.580	0.000	0.025	0.875	0.000	13.570	0.000	0.011	14.142	0.000	0.011	16.936	0.000	0.013	1.037	0.309	0.001	0.001	0.972	0.000
Time	0.964	0.381	0.002	0.033	0.968	0.000	1.440	0.237	0.002	1.315	0.269	0.002	1.934	0.145	0.003	0.426	0.653	0.001	2.359	0.095	0.004
di_vote	72.839	0.000	0.054	2.074	0.150	0.002	45.891	0.000	0.035	0.774	0.379	0.001	0.982	0.322	0.001	5.738	0.017	0.004	28.983	0.000	0.022
Gender	67.269	0.000	0.050	16.494	0.000	0.013	48.495	0.000	0.037	145.417	0.000	0.102	620.013	0.000	0.327	20.430	0.000	0.016	48.375	0.000	0.037
Sample * Time	0.865	0.421	0.001	0.169	0.845	0.000	2.137	0.118	0.003	0.218	0.804	0.000	0.805	0.447	0.001	0.161	0.852	0.000	0.698	0.498	0.001
Sample * di_vote	9.648	0.002	0.008	0.086	0.770	0.000	4.145	0.042	0.003	0.381	0.537	0.000	0.975	0.324	0.001	4.558	0.033	0.004	14.801	0.000	0.011
Sample * Gender	1.398	0.237	0.001	0.581	0.446	0.000	2.922	0.088	0.002	0.341	0.559	0.000	0.881	0.348	0.001	0.001	0.971	0.000	1.459	0.227	0.001
Time * di_vote	0.563	0.570	0.001	0.533	0.587	0.001	0.731	0.482	0.001	7.505	0.001	0.012	5.217	0.006	0.008	8.189	0.000	0.013	0.152	0.859	0.000
Time * Gender	1.940	0.144	0.003	0.316	0.729	0.000	0.141	0.869	0.000	0.076	0.926	0.000	0.240	0.786	0.000	0.256	0.774	0.000	1.735	0.177	0.003
di_vote * Gender	0.044	0.834	0.000	0.295	0.587	0.000	0.187	0.666	0.000	88.141	0.000	0.065	135.395	0.000	0.096	0.089	0.765	0.000	0.709	0.400	0.001
Sample * Time * di_vote	0.350	0.705	0.001	0.679	0.508	0.001	2.533	0.080	0.004	0.343	0.710	0.001	0.692	0.501	0.001	0.149	0.862	0.000	0.067	0.935	0.000
Sample * Time * Gender	0.116	0.890	0.000	0.021	0.979	0.000	0.336	0.715	0.001	0.021	0.979	0.000	0.126	0.881	0.000	1.342	0.262	0.002	0.274	0.760	0.000
Sample * di_vote * Gender	0.031	0.860	0.000	0.007	0.935	0.000	0.012	0.914	0.000	1.259	0.262	0.001	3.708	0.054	0.003	0.746	0.388	0.001	0.003	0.955	0.000
Time * di_vote * Gender	2.759	0.064	0.004	0.567	0.567	0.001	1.384	0.251	0.002	0.669	0.512	0.001	1.029	0.358	0.002	0.104	0.901	0.000	0.398	0.672	0.00
Sample * Time * di_vote * Gender	0.130	0.878	0.000	4.665	0.017	0.007	1.945	0.143	0.003	0.267	0.766	0.000	0.341	0.711	0.001	0.297	0.743	0.000	1.347	0.260	0.002

(Continued next page)

	IAT Scores	;	IAT (Perceived) Accuracy						
			Partial Eta			Partial Eta			
Source	F	Sig.	Squared	F	Sig.	Squared			
Corrected Model	3.384	0.000	0.060	1.460	0.070	0.027			
Intercept	103.678	0.000	0.076	916.970	0.000	0.418			
Csnvatism	0.220	0.639	0.000	10.310	0.001	0.008			
Sample	3.333	0.036	0.005	0.384	0.681	0.001			
Time	0.522	0.470	0.000	1.789	0.181	0.001			
di_vote	0.902	0.342	0.001	0.503	0.478	0.000			
Gender	39.173	0.000	0.030	5.955	0.015	0.005			
Sample * Time	0.928	0.396	0.001	1.190	0.304	0.002			
Sample * di_vote	0.090	0.914	0.000	0.677	0.508	0.001			
Sample * Gender	1.938	0.144	0.003	0.859	0.424	0.001			
Time * di_vote	2.095	0.148	0.002	0.394	0.530	0.000			
Time * Gender	0.189	0.664	0.000	0.054	0.815	0.000			
di_vote * Gender	4.710	0.030	0.004	0.364	0.546	0.000			
Sample * Time * di_vote	1.282	0.278	0.002	0.613	0.542	0.001			
Sample * Time * Gender	0.113	0.893	0.000	0.076	0.926	0.000			
Sample * di_vote * Gender	1.695	0.184	0.003	2.375	0.093	0.004			
Time * di_vote * Gender	0.021	0.884	0.000	0.030	0.862	0.000			
Sample * Time * di_vote * Gender	1.884	0.152	0.003	0.292	0.747	0.000			

V. Results of full factorial (including 3- and 4-way interactions) ANOVAs (not controlling for conservatism)

	Modern Sexism			Benevolent Sexism H			Hostile Sex	ism	Personal Discrimination				Group Discr	Group Discrimination			tification	Conservatism			
			Partial Eta			Partial Eta			Partial Eta			Partial Eta			Partial Eta			Partial Eta			Partial Eta
Source	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared
Corrected Model	29.376	0.000	0.346	6.472	0.000	0.105	25.448	0.000	0.315	18.899	0.000	0.254	51.024	0.000	0.479	9.798	0.000	0.150	54.176	0.000	0.494
Intercept	12449.724	0.000	0.907	15968.414	0.000	0.926	13477.023	0.000	0.914	3347.791	0.000	0.724	6590.719	0.000	0.838	27.570	0.000	0.021	10618.620	0.000	0.893
Sample	1.649	0.199	0.001	0.495	0.482	0.000	18.372	0.000	0.014	15.466	0.000	0.012	18.215	0.000	0.014	2.633	0.105	0.002	5.591	0.018	0.004
Time	1.859	0.156	0.003	0.086	0.917	0.000	2.017	0.133	0.003	1.585	0.205	0.002	2.203	0.111	0.003	1.054	0.349	0.002	2.462	0.086	0.004
di_vote	464.876	0.000	0.267	89.206	0.000	0.065	385.177	0.000	0.232	12.863	0.000	0.010	11.799	0.001	0.009	140.883	0.000	0.100	1110.182	0.000	0.465
Gender	58.976	0.000	0.044	14.994	0.000	0.012	41.755	0.000	0.032	144.171	0.000	0.102	617.009	0.000	0.326	18.195	0.000	0.014	0.141	0.707	0.000
Sample * Time	1.398	0.247	0.002	0.336	0.714	0.001	2.870	0.057	0.004	0.262	0.769	0.000	0.914	0.401	0.001	0.407	0.666	0.001	0.986	0.373	0.002
Sample * di_vote	11.247	0.001	0.009	0.000	0.998	0.000	5.453	0.020	0.004	0.277	0.599	0.000	0.823	0.364	0.001	3.011	0.083	0.002	1.518	0.218	0.001
Sample * Gender	1.601	0.206	0.001	0.403	0.526	0.000	3.142	0.077	0.002	0.380	0.538	0.000	0.934	0.334	0.001	0.026	0.873	0.000	0.249	0.618	0.000
Time * di_vote	0.959	0.384	0.002	0.415	0.660	0.001	0.808	0.446	0.001	7.840	0.000	0.012	5.471	0.004	0.009	8.472	0.000	0.013	0.883	0.414	0.001
Time * Gender	2.352	0.096	0.004	0.338	0.713	0.001	0.355	0.701	0.001	0.086	0.918	0.000	0.291	0.748	0.000	0.405	0.667	0.001	0.591	0.554	0.001
di_vote * Gender	0.101	0.750	0.000	0.191	0.662	0.000	0.293	0.588	0.000	88.263	0.000	0.065	135.523	0.000	0.096	0.033	0.856	0.000	0.129	0.720	0.000
Sample * Time * di vote	0.359	0.699	0.001	0.564	0.569	0.001	2.759	0.064	0.004	0.343	0.709	0.001	0.650	0.522	0.001	0.107	0.899	0.000	0.194	0.824	0.000
Sample * Time * Gender	0.202	0.818	0.000	0.046	0.955	0.000	0.461	0.631	0.001	0.030	0.970	0.000	0.123	0.885	0.000	1.022	0.360	0.002	0.189	0.828	0.000
Sample * di_vote * Gender	0.390	0.533	0.000	0.059	0.808	0.000	0.322	0.571	0.000	1.032	0.310	0.001	3.359	0.067	0.003	0.213	0.645	0.000	2.248	0.134	0.002
Time * di_vote * Gender	3.308	0.037	0.005	0.307	0.736	0.000	1.696	0.184	0.003	0.732	0.481	0.001	1.056	0.348	0.002	0.024	0.977	0.000	0.662	0.516	0.001
Sample * Time * di_vote * Gender	0.532	0.587	0.001	4.889	0.008	0.008	2.923	0.054	0.005	0.235	0.791	0.000	0.289	0.749	0.000	0.470	0.625	0.001	1.576	0.207	0.002

(Continued next page)

	Affirmative	e Action		IAT Scores		IAT (Perceived) Accuracy						
			Partial Eta			Partial Eta			Partial Eta			
Source	F	Sig.	Squared	F	Sig.	Squared	F	Sig.	Squared			
Corrected Model	19.365	0.000	0.259	3.524	0.000	0.060	1.068	0.375	0.019			
Intercept	17316.017	0.000	0.931	1048.952	0.000	0.453	10274.578	0.000	0.889			
Sample	0.517	0.472	0.000	3.304	0.037	0.005	0.525	0.592	0.001			
Time	2.867	0.057	0.004	0.303	0.582	0.000	1.354	0.245	0.001			
di_vote	302.948	0.000	0.192	0.848	0.357	0.001	0.244	0.621	0.000			
Gender	42.259	0.000	0.032	39.259	0.000	0.030	6.068	0.014	0.005			
Sample * Time	1.036	0.355	0.002	0.907	0.404	0.001	1.298	0.274	0.002			
Sample * di_vote	16.467	0.000	0.013	0.090	0.914	0.000	0.810	0.445	0.001			
Sample * Gender	1.663	0.197	0.001	1.967	0.140	0.003	0.965	0.381	0.002			
Time * di_vote	0.111	0.895	0.000	2.144	0.143	0.002	0.263	0.608	0.000			
Time * Gender	2.124	0.120	0.003	0.194	0.660	0.000	0.071	0.790	0.000			
di_vote * Gender	0.464	0.496	0.000	4.744	0.030	0.004	0.312	0.576	0.000			
Sample * Time * di vote	0.023	0.978	0.000	1.278	0.279	0.002	0.662	0.516	0.001			
Sample * Time * Gender	0.373	0.688	0.001	0.107	0.899	0.000	0.115	0.891	0.000			
Sample * di_vote * Gender	0.257	0.612	0.000	1.713	0.181	0.003	2.344	0.096	0.004			
Time * di_vote * Gender	0.710	0.492	0.001	0.016	0.899	0.000	0.093	0.760	0.000			
Sample * Time * di_vote * Gender	2.210	0.110	0.003	1.919	0.147	0.003	0.363	0.696	0.001			