
Online Appendix

1 Estimation
This appendix presents the formalization of the Metropolis-within-Gibbs-Sampler
used to fit the Hybrid Multinomial-Dirichlet-Model described in subsection Model
Assumptions and Structure.

(I) Choose number of iterations by defining Burn-In, Sample-Size and Thin-
ning

(II) Choose starting values (β rc
i ,αrc)

(0) with (i= 1, . . .P), (r = 1, . . .R) and (c=
1, . . .C)

(III) Start of algorithm with Iteration j = 1:

(i) Successively simulate (β rc
i )( j) with Full Conditional fβ for β rc

i :

fβ (β
rc
i ) ∝ (β rc

i )Zrc
i × (Θc,i)

(Tc,i−Zc,i)× (β rc
i )αrc−1

(a) Draw (β rc
i )∗ from hβ ∼ N

(
(β rc

i )( j−1),σ2
β rc

i

)

(b) Calculate γ = min

1,
fβ

(
(β rc

i )∗
)

fβ

(
(β rc

i )( j−1)
)


(c) Set (β rc
i )( j) = (β rc

i )∗ with probability γ

(ii) Successively simulate (αrc)
( j) with Full Conditional fα of αrc:

fα(αrc) ∝
Γ(∑C

c′=1 αrc′)

Γ(αrc)
×∏

P
i=1(β

rc
i )(αrc−1)×α

λ rc
1 −1

rc × exp(−λ rc
2 αrc)

(a) Draw (αrc)
∗ from hα ∼ N

(
(αrc)

( j−1),σ2
αrc

)

(b) Calculate γ = min

1,
fα

(
(αrc)

∗
)

fα

(
(αrc)( j−1)

)


(c) Set (αrc)
( j) = (αrc)

∗ with probability γ

(iii) (β rc
i ,αrc)

( j) will be saved with following conditions:
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- j > Burn-In

- Rest of
j

Thinning
= 0

(IV) Result is Markov-chain
(
(β rc

i ,αrc)
(1), . . . ,(β rc

i ,αrc)
(S)
)
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2 First Simulation Setup and Computational Details
The population of each district i was simulated using a Poisson distribution (equa-
tion (15)). Results of election one in each district i were drawn with a Dirichlet
distribution (equation (16)). We have chosen q = 50 to have slightly different but
realistic election one results in each district.

Ni ∼ Po(λ = 800) (15)

(NCSU1,i, . . . ,NNW1,i)∼
Dir(q× (0.269,0.244,0.086,0.092,0.039,0.034,0.266))

(16)

The voting transitions between election one and election two are based on a
realistic example in the city of Munich. The expected voting probabilities dis-
played in Table 7 are assumed in every district in every data set. In the next step
we drew row-wise voting probabilities via (β rc

i , . . . ,β rc
i )∼Dir(k×(αr1, . . . ,αrC))

with (αr1, . . . ,αrC) referring to one row in Table 7. For heterogeneous and homo-
geneous probabilities between districts, we chose khet = 5 and khom = 20, respec-
tively.

Table 7: Expected voting probabilities in simulation study
aaaaaaaa
Election 1

Election 2 CSU SPD TheLeft Greens Other parties Nonvoter

CSU .80 .02 .03 .03 .05 .07 NCSU_1

SPD .04 .79 .03 .03 .05 .06 NSPD_1

TheLeft .02 .09 .45 .01 .18 .25 NT heLe f t_1

FDP .37 .06 .01 .01 .52 .03 NFDP_1

Greens .02 .17 .03 .71 .04 .03 NGreens_1

Other parties .03 .06 .03 .01 .82 .05 NOT H_1

Nonvoter .03 .04 .03 .03 .04 .83 NNV _1

TCSU_2 TSPD_2 TT heLe f t_2 TGreens_2 TOT H_2 TNV _2 N

We fit the model with the Hybrid Multinomial-Dirichlet-Model as imple-
mented in eiwild. After running tests with some data sets to examine conver-
gence in trade-off with running time, we ran all data sets with Markov chain with
1300000 iterations. With a burn-in of 50000 and thinning of 1250, calculation of
probabilities was done with a left-over sample of 1000.

3



3 Simulation Study I: Additional Consideration
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Simulation Study 1: Estimation Quality per Cell, Aggregate−Data only models, Counts

heterogenous, no aggregation bias
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Simulation Study 1: Estimation Quality per Cell, Hybrid Models with 'biased exit−poll', Counts

heterogenous, no aggregation bias
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Figure S1: Results of the first part of the simulation study. Cell-specific distance
from the true voting numbers for each party combination. y-axis displays the differ-
ence between the estimated number of voters and the value in the simulated individ-
ual level data for each of the 100 data sets and x-axis displays the considered voter
transition. The upper figure shows the difference using the estimates from the ag-
gregate data only model, the lower figure using the estimates from the hybrid model
with biased exit-poll. Reading example: Using the aggregate data only model for the
estimation, the median of the bias for the loyal CSU voters of all 100 simulated data
sets is around -5500 voters.
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4 Second Simulation Setup and Computational De-
tails

The population in each district i was simulated using a Poisson distribution (equa-
tion (17)). Results of election one in each district i were results of the German
Federal Election (GFE) 2009 in the city of Munich and were drawn with a Dirich-
let distribution (equation (18)). We have chosen q = 50 to have slightly different
but realistic election one results in each district. Before we assumed voting tran-
sitions and calculated election two results, we split the population in three sub-
populations: voters who behave loyally (1), are more willing to change parties (2)
and some middle-ground between (1) and (2). The sub-population distribution in
each district was drawn by a Dirichlet distribution, which assumes in expectation
equal distribution (equation (19)).

Ni ∼ Po(λ = 1500) (17)

(NCSU1,i, . . . ,NNW1,i)∼
Dir(q× (0.236,0.142,0.129,0.128,0.099,0.266))

(18)

(Pop1,Pop2,Pop3)∼ Dir(q× (1/3,1/3,1/3)) (19)

The expected voting transitions for ’normal’ sub-population are displayed in
Table 8. The diagonal of the other two sub-populations were slightly adjusted up
or down.

Table 8: Expected voting probabilities of ’normal’ sub-population in second simu-
lation study
aaaaaaaa
Election 1

Election 2 CSU SPD FDP Greens Other parties Nonvoter

CSU .80 .02 .03 .03 .05 .07 NCSU_1

SPD .04 .79 .02 .03 .06 .06 NSPD_1

FDP .37 .06 .37 .01 .16 .03 NFDP_1

Greens .02 .18 .01 .71 .06 .02 NGreens_1

Other parties .03 .07 .01 .01 .77 .11 NOT H_1

Nonvoter .03 .05 .03 .03 .06 .80 NNV _1

TCSU_2 TSPD_2 TFDP_2 TGreens_2 TOT H_2 TNV _2 N
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Similarly to the first simulation, we draw row-wise voting probabilities via
(β rc

i , . . . ,β rc
i )∼Dir(k×(αr1, . . . ,αrC)) with (αr1, . . . ,αrC) referring to one row in

Table 8. For heterogeneity, we chose k=5. After calculating each voter transition
table, we combined the three sub-populations to get the voting transition table of
one city. The column totals gave us the election two results.

As in the first simulation, we fit the model with the Hybrid Multinomial-
Dirichlet-Model as implemented in eiwild. The Markov chain had 1400000
iterations with a burn-in of 150000 and thinning of 1250. The calculation of
probabilities was done with a left-over sample of 1000. We slightly adjusted the
Burn-In to better fit the model with 600 districts.
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5 Computational Details of Voter Transition Esti-
mation between Two Elections in Munich

Computational details of the application to real data (section Voter Transitions
Between Two Elections in Munich): We fit the ’(Hybrid) Multinomial-Dirichlet-
Model’ with eiwild_v0.6.4 (eiwild 2014) on R_v3.0.2 (R 2008). The prior
distribution was Gamma(λ1 = 4,λ = 2), which is the most uninformative prior
without defining cell-specific prior distributions (subsection Introducing Prior Knowl-
edge). Convergence of the Markov-Chains or rather the empiric measures was
achieved with 2700000 iterations (Burn-in = 200000, thinning = 1250). We cal-
culated the probabilities with the left-over sample-size of 2000. The running-time
of the model was approximately 21 hours with a 2-threaded 2.15Ghz CPU.
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