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Appendix A. Parameter Recovery: Monte Carlo Results 

We tested three scenarios: (1) the correctly specified model, i.e. the researcher uses the model 

that generated the data for estimation (data-generation process is similar to the one described in 

the paper); (2) the data generation process includes the process of habit formation and evolution, 

but the model used for estimation ignores that, which means the model is incorrectly specified; 

and (3) a data generation process does not include the habit process, but the researcher allows for 

it in his empirical model. Parameter true values, estimates for 50 Monte Carlo samples, and 

standard deviations are displayed in table below. 

In the first case, with a well-specified model, we find that the parameters are all correctly 

identified. In the second setting, in which the habit influences consumer decisions and the model 

used in estimation ignores it, we observe that several parameters–especially those related to flow 

utility–are now biased. This is because the habit state picks up patterns of increased frequency 

and length of active sessions over time. If not accounted for, these effects will then be imputed to 

flow utility and overestimate the respective parameters. This setting highlights the importance of 

accounting for habit as an unobserved state that influences usage decisions. Finally, when the 

data do not contain the effect of habit but a researcher specifies a habit process in his model, we 

find that the model recovers the parameters well. Estimates show that there is no difference 

between habitual and non-habitual decision arrival rates, and that parameters that pick up the 

additional effect of habit on flow utility and the probability of changing the habit state are not 
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significantly different from zero. This shows that a richer model, i.e. the one allowing for the 

habit process, is able to correctly identify a case when habit does not impact consumer product 

usage decisions. 

Table 1: Parameter recovery: Monte Carlo simulation results.  

 
Correct Specification Habit in data, not in 

model 

Habit in model, not in 

data 

Parameter 
 

True Estim. St. Dev. True Estim. St. Dev. True Estim. St. Dev. 

Flow gaming utility–intercept α1 1.00 1.02 0.29 1.00 0.92 0.21 1.00 0.96 0.13 

Flow utility of gaming–

additional per each level 

α2 0.70 0.68 0.16 0.70 2.11 0.19 0.70 0.71 0.12 

Decision arrival rate in idle 

period, no habit state 
𝜆0

0 2.00 1.96 0.09 2.00 

2.61 0.05 2.00 

2.06 0.44 

Decision arrival rate in idle 

period, habit state 
𝜆1

0 3.00 2.95 0.15 3.00 1.97 0.18 

Decision arrival rate in active 

period, no habit state  
𝜆0

1 5.00 4.96 0.54 5.00 

2.67 0.18 3.00 

2.99 0.19 

Decision arrival rate in active 

period, habit state 
𝜆1

1 4.00 3.97 0.52 4.00 2.96 0.32 

Additional flow utility from 

gaming if in habit state 

α3 2.00 2.00 0.09 2.00 - - - -0.02 0.11 

Probability of going from habit 

to no-habit state 

φh 0.70 0.71 0.08 0.70 - - - 0.30 0.22 

Probability of getting satiated φb 0.40 0.41 0.07 0.40 0.25 0.04 0.40 0.40 0.06 

Flow utility of staying idle if got 

satiated during a gaming session 

ω 1.00 1.00 0.06 1.00 1.83 0.06 1.00 1.02 0.07 

Instantaneous extrinsic utility of 

leveling 

β2 1.00 0.96 0.26 1.00 1.44 0.33 1.00 0.99 0.17 

Instantaneous intrinsic utility of 

leveling 

β1 0.70 0.74 0.27 0.70 1.05 0.37 0.70 0.73 0.18 

Costs of starting a gaming 

session 

γsetup -2.00 -1.95 0.19 -2.00 -0.80 0.14 -2.00 -1.93 0.17 

Leveling arrival rates 
          

to level 2 𝜆1
𝑒𝑥𝑝

 1.48 1.48 0.03 1.48 1.49 0.03 1.48 1.48 0.03 

to level 3 𝜆2
𝑒𝑥𝑝

 1.46 1.47 0.04 1.46 1.45 0.04 1.46 1.46 0.03 

to level 4 𝜆3
𝑒𝑥𝑝

 1.44 1.44 0.03 1.44 1.44 0.03 1.44 1.44 0.03 

to level 5 𝜆4
𝑒𝑥𝑝

 1.42 1.42 0.03 1.42 1.41 0.03 1.42 1.42 0.04 

to level 6 𝜆5
𝑒𝑥𝑝

 1.40 1.41 0.03 1.40 1.40 0.03 1.40 1.41 0.04 

 



Appendix B. The Intensity Matrix R 

 
 

z1=(g=0,l=1) z2=(g=0,l=2) z3=(g=1,l=1) z4=(g=1,l=2) schurn  

s=(z,k) k1 k2 k3  k4 k1 k2 k3  k4 k1 k2 k3  k4 k1 k2 k3  k4 

 
s1 s2 s3 s4 s5 s6 s7  s8  s9 s10 s11  s12  s13  s14  s15  s16  

z1 k1=(h=0,b=0) s1 -μ(s1) 0  0  0  0  0  0  0  μ1(s1) 0  0  0  0  0  0  0  0  

k2=(h=1,b=0) s2 μ0(s2) -μ(s2)  0  0  0  0  0  0  0  μ1(s2) 0  0  0  0  0  0  0  

k3=(h=0,b=1) s3 0  0  -μ(s3) 0  0  0  0  0  μ1(s3) 0  0  0  0  0  0  0  0  

k4=(h=1,b=1) s4 0  0  μ0(s4) -μ(s4) 0  0  0  0  0  μ1(s4) 0  0  0  0  0  0  0  

z2 k1=(h=0,b=0) s5 0  0  0  0  -μ(s5) 0  0  0  0  0  0  0  μ1(s5) 0  0  0  0  

k2=(h=1,b=0) s6 0  0  0  0  μ0(s6) -μ(s6) 0  0  0  0  0  0  0  μ1(s6) 0  0  0  

k3=(h=0,b=1) s7 0  0  0  0  0  0  -μ(s7) 0  0  0  0  0  μ1(s7) 0  0  0  0  

k4=(h=1,b=1) s8 0  0  0  0  0  0  μ0(s8) -μ(s8) 0  0  0  0  0  μ1(s8) 0  0  0  

z3 k1=(h=0,b=0) s9 0  η0(s9) 0  0  0  0  0  0  -η(s9) 0  η1(s9) 0  λ1
exp 0  0  0  η2(s9) 

k2=(h=1,b=0) s10 0  η0(s10) 0  0  0  0  0  0  0  -η(s10) 0  η1(s10) 0  λ1
exp 0  0  η2(s10) 

k3=(h=0,b=1) s11 0  0  0  η0(s11) 0  0  0  0  0  0  -η(s11) 0  0  0  λ1
exp 0  η2(s11) 

k4=( h=1,b=1 )  s12 0  0  0  η0(s12) 0  0  0  0  0  0  0  -η (s12) 0  0  0  λ1
exp η2(s12) 

z4  k1=(h=0,b=0) s13 0  η0(s13) 0  0  0  0  0  0  0  0  0  0  -η(s13) 0  η1(s13) 0  η2(s13) 

k2 =(h=1,b=0) s14 0  η0(s14) 0  0  0  0  0  0  0  0  0  0  0  -η(s14) 0  η1(s14) η2(s14) 

k3=(h=0,b=1) s15 0  0  0  η0(s15) 0  0  0  0  0  0  0  0  0  0  -η(s15) 0  η2(s15) 

k4=(h=1,b=1) s16 0  0  0  η0(s16) 0  0  0  0  0  0  0  0  0  0  0  -η(s16) η2(s16) 

schurn 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

Note: We show the intensity matrix R for underlying processes H with states h = 0,1 and B with states b = 0,1 and observable processes L with states l = 1,2 and G with states g = 0,1,2. 

 

 



Appendix C. Details on Estimation Algorithm 

The estimation combines two expectation-maximization (EM) algorithms. The first, outer 

algorithm, handles the discrete representation of unobserved consumer heterogeneity; the second, 

inner algorithm, handles the unobserved state transitions of the continuous-time Markov chain 

𝑆(𝑡): 

1) Set initial values for the vector of structural parameters Θ for each consumer segment, and 

each element 𝑝𝑖𝑗 (𝑖 = 1, … , 𝑁, 𝑗 = 1, … , 𝐽) in the matrix 𝑝 containing probabilities of 

consumers' association with latent segments. 

2) Outer EM algorithm: Repeat the Steps (a) and (b) until 𝑝𝑖𝑗
𝑘+1  −  𝑝𝑖𝑗

𝑘  < 𝜀𝑜𝑢𝑡 (i = 1, … , N, j =

1, … , J), where 𝑘 is the outer loop iterator, 𝜀𝑜𝑢𝑡 is a stopping parameter: 

a) Inner EM algorithm:  

Repeat Steps (i) and (ii) until Θ𝑚+1 − Θ𝑚 <  𝜀𝑖𝑛𝑛𝑒𝑟 , where 𝑚 is the inner loop iterator 

and 𝜀𝑖𝑛𝑛𝑒𝑟 is a stopping parameter: 

i. Given vector Θ and matrix 𝑝, for all states s of the Markov chain 𝑆(𝑡) and for 

each segment 𝑗 (𝑗 = 1, … , 𝐽), compute the expected number of transitions from 

state s to state s' denoted by 𝑀𝑠′
𝑠  and the expected dwell time in state s denoted by 

𝐷𝑠. 𝑀𝑠′
𝑠   and 𝐷𝑠 are functions of the entries in the intensity matrix R, which are in 

their turn functions of structural parameters Θ. For the sake of brevity, we refer 

the reader to Mark and Ephraim (2013) for expressions for 𝑀𝑠′
𝑠   and 𝐷𝑠. 

ii. Given 𝑀𝑠′
𝑠   and 𝐷𝑠 computed in Step (i), maximize the expected log-likelihood of 

observed state transitions and durations in Equation 16 with respect to parameters 

Θ and the set of value-functions constraints.  
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End inner EM algorithm. 

b) Update elements 𝑝𝑖𝑗  using Equation 17. 

End outer EM algorithm. 
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Appendix D. Elasticity of Game Play 

In this appendix we show elasticities of a 1% change in each utility component on the amount of 

product usage, at the observed data values. The results are shown in Table 2. We find that 

consumers react the most, in terms of relative change, to variations in the intrinsic utility, with 

values of about 2.5% to 3.5% across the three segments, for a 1% change in the baseline intrinsic 

utility. The arrival of an additional cue also causes a significant impact: Having one more 

opportunity to login leads to an increase in product usage of 1.7%, 4.1%, and 3.1%, for segments 

1, 2, and 3, respectively. On the negative side, if the habit state disappears, there is a drop of 

1.7%, 0.7%, and 0.8% for each segment, respectively. 

 

Table 2. Elasticities of each component of the model (% change in hours spent in the active state) 

 
Segment 1 Segment 2 Segment 3 

Flow utility of gaming, 1% increase 3.5 2.5 2.7 

Additional utility from habit, 1% increase 0.1 0.6 0.2 

Cost of starting a gaming session, 1% decrease 0.5 0.3 0.2 

Probability of habit reduction, 1% increase -1.7 -0.7 -0.8 

Probability of getting into a tired state, 1% increase 0.1 0.2 0.0 

Utility of staying idle when tired, 1% increase 0.1 0.2 0.0 

Extrinsic utility, small reward, 1% increase 0.0 0.0 0.0 

Extrinsic utility, large reward, 1% increase 0.0 0.0 0.0 

Intrinsic utility of leveling up, 1% increase 0.1 0.2 0.1 

Cue arrival rate in the idle state, h = 0 0.1 0.1 0.1 

Cue arrival rate in the idle state, h = 1 1.7 0.8 1.0 

Duration of flow in the active state, h = 0 1.7 4.1 3.1 

Duration of flow in the active state, h = 1 0.1 0.4 0.2 
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Appendix E. Estimated Effects of Habit and Satiation on Consumer Choices 

In this appendix, we explore the effects of habit and satiation on consumer gaming choices. To 

achieve this goal, we focus on the following statistics relevant to dynamic continuous-time 

discrete-choice models with state-specific arrival rates for decision opportunities:1 

estimated probability of remaining in a state, estimated expected durations of a state, and ratio of 

state durations to calendar time. For a consumer at experience level l = 32 and different levels of 

habit and satiation, we show the above statistics in Table 3 and offer a brief discussion.  

We start with the effects of satiation. We see that being satiated by a previous gaming 

session (b = 1) leads to a longer duration of the idle period. For example, a satiated Segment 1 

consumer is expected to stay idle for 24.35 hours vs. 6.10 hours otherwise. Alternatively, we can 

compute the probability of remaining idle t hours after the end of a game session to assess the 

effect of satiation. Again, we see that satiation makes consumers stay idle longer: e.g., there is 

just 36% probability that a non-satiated Segment 1 consumer stays idle 5 hours after she stopped 

her most recent game session, while that probability is 80% for a satiated one. Other consumer 

segments demonstrate directionally similar effects of satiation. 

We now turn to the effects of habit. Consumer builds up her habit by interacting with the 

game and can reduce her habit level during an idle period by consistently abstaining from 

gaming when cues nudging her to game arrive. Therefore, consumer starts her idle period in a 

high habit state h = 1 after having interacted with the product. The high habit state during an idle 

period is relatively short-lived. For example, for a satiated Segment 1 consumer, the expected 

                                                 
1 Analyzing choice probabilities alone is not sufficient for these types of models since consumer change of state is a 

function of both choice probabilities and arrival rates for decision opportunities. E.g., switching from an idle state to 

an active gaming state is a function of consumer choice probabilities in the idle state and a habit state-specific cue 

arrival rate, which takes on different values depending on habit level. 
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duration is under an hour. Eventually, an idle consumer in a high habit state either starts a new 

gaming session or remains idle and may transition into the low habit state h = 0. If a non-satiated 

Segment 1 consumer indeed enters the low habit state, the expected duration of her idle period is 

10.15 hours. It is considerably longer than the expected duration computed without conditioning 

on necessarily entering the low habit state, which is just 6.10 hours. The main driver behind the 

difference in those durations is the consumer's propensity to get back to gaming, which differs 

between the two habit states: the probability that the consumer is back to gaming in the next 30 

minutes is 15.92% for state h = 1, and just 3.76% for state h = 0. The effect is directionally 

consistent across satiation levels and all consumer segments.  

A user who does not exit the high habit state h = 1 during her idle period but starts a new 

gaming session in that habit state ends up spending larger share of her calendar time gaming. The 

reason is that the heightened level of habit pushes a gamer to start a new gaming session after a 

rather short break. For example, Segment 1 gamer devotes 62% of her calendar time to gaming if 

resumes gaming in the high habit state, though the expected duration of a new gaming session in 

that case tends to be shorter, 0.99 hours vs. 1.55 hours. On the other hand, an identical gamer 

who happens to have transitioned into the low habit state h = 0 during her idle period spends just 

13% of her calendar time actively gaming. Again, the effect of the habit on the share of calendar 

time devoted to active gaming is directionally consistent across satiation levels and consumer 

segments. 
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Habit (h) and 

satiation (b) levels: 

0 = low, 1 = high 

Segment 1 Segment 2 Segment 3 

1 Estimated expected duration of the idle state (g = 

0), hours 
b = 0  6.10 5.93 4.77 

b = 1  24.35 34.36 6.51 

2 Estimated probability of remaining idle (g = 0) 5 

hours after ending a game session 
b = 0  0.36 0.35 0.29 

b = 1  0.80 0.84 0.39 

4 Estimated expected duration of the high habit state 

during an idle period (g = 0, h = 1), hours2 
b = 0  0.60 0.58 0.52 

b = 1  0.92 0.92 0.64 

5 Estimated expected duration of an idle session (g = 

0), conditional on consumer having transitioned 

into a low habit state h = 0 over the course of the 

idle period 

b = 0  10.15 10.38 9.44 

b = 1  25.91 36.32 10.20 

6 Probability of being in an active game session in 30 

minutes, conditional on current habit h and satiation 

states b 

h = 1, b = 0  15.92% 19.83% 22.31% 

h = 0, b = 0   3.76% 3.87%. 4.17% 

h = 1, b = 1   1.78% 1.77% 14.57% 

h = 0, b = 1   1.46% 1.09% 3.90% 

7 Estimated expected duration of an active game 

session (g = 1), in hours 
h = 0  1.55 2.63 2.40 

h = 1  0.99 2.23 1.19 

8 Estimated probability to be gaming (g = 1), 2 hours 

after the start of a gaming session 
h = 0  0.27 0.48 0.45 

h = 1 0.13 0.41 0.18 

9 Estimated share of gaming time (out of calendar 

time3) if a gaming session was started in the habit 

state h after having spent the idle period in satiation 

state b  

h = 1, b = 0 62.26% 76.63% 69.59% 

h = 1, b = 1   51.83% 70.79% 65.03% 

h = 0, b = 0 13.25% 20.22% 20.27% 

h = 0, b = 1   5.64% 6.75% 19.05% 

 

 

 

 

 

                                                 
2 Satiated consumer tends to stay idle longer, while a non-satiated consumer is drawn back into active gaming 

sooner, including the cases when she starts a new game session in the high habit state. Therefore, it should not be 

concluded from the numbers in this line that satiation causes a longer duration of the high habit state. These numbers 

are used as inputs for line 8. 
3 Calendar time = idle period duration + game session duration. 
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