
Appendix I. Simplified Spectator-Grandstand Interaction 
Model Matrices and Vectors. 
This appendix details the matrices and vector of the equation system which reflects the 
formulation of the proposed spectator-grandstand interaction model. Herein 𝐌𝐌 is the mass 
matrix, 𝐂𝐂 is the damping matrix, 𝐊𝐊 is the stiffness matrix, 𝐅𝐅 is the force vector, and 𝐳𝐳 is the 
vertical displacement vector. 
 

𝐌𝐌 = �

𝑀𝑀1 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑚𝑚𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) … 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑚𝑚𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) 0
… … … 0

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑚𝑚𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠)
0

…
0

𝑀𝑀𝑛𝑛 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑚𝑚𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) 0
0 𝑚𝑚𝑎𝑎

�                            

(13) 

 

 

𝐂𝐂 = �

𝐶𝐶1 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) … 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) −𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠
… … … …

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠)
−𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠

…
…

𝐶𝐶𝑛𝑛 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) −𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠
−𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑐𝑐𝑠𝑠 𝑐𝑐𝑠𝑠

�                         

(14) 

 

 

𝐊𝐊 = �

𝐾𝐾1 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) … 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) −𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠
… … … …

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠)
−𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠

…
…

𝐾𝐾𝑛𝑛 + 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠 ∙ 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) −𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠
−𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠

�                         

(15) 

 

 

𝑭𝑭 = �

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,1(𝐱𝐱𝑠𝑠) ∙ 𝐹𝐹𝑠𝑠,𝑣𝑣𝑣𝑣𝑣𝑣
…

𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛(𝐱𝐱𝑠𝑠) ∙ 𝐹𝐹𝑠𝑠,𝑣𝑣𝑣𝑣𝑣𝑣
0

�                                  (16)  

 

𝒛𝒛 = �

𝑧𝑧1
…
𝑧𝑧𝑛𝑛
𝑧𝑧𝑎𝑎
�                                             (17)  

 

Appendix II. Basics of Finite Element Model Updating 
 
The FE model-updating technique, based on the modal domain (Friswell and Mottershead 
1995), allows adjusting the numerical modal parameters obtained from a FE model of a 
structure to its real experimental modal parameters. After the updating process, the numerical 
model better characterizes the actual behavior of the structure. Herein, the FE model updating 
was applied under the maximum likelihood approach (Marwala, 2010). According to this 
approach, the updating process may be formulated via a multi-objective optimization problem. 
The main aim of this optimization problem is to minimize the value of the different terms of 
the multi-objective function. These terms are defined as the relative differences between the 
experimental and numerical modal parameters. Concretely, the natural frequencies and 
associated vibration modes are considered herein. As design variables of the optimization 



problem, the physical parameters, 𝜃𝜃, with greater influence on the dynamic behavior of the 
structure are considered. A search domain for each design variable is established in order to 
reduce the simulation time of the optimization algorithm. As optimization method, the NSGA-
II algorithm (Srinivas and Deb 1994), has been used herein due to both its robustness and 
independence on the starting point pre-selected to initiate the search process (Nocendal and 
Wright 1999). The multi-objective function may be defined as: 
 

min(𝑓𝑓1(𝜃𝜃) 𝑓𝑓2(𝜃𝜃)) = 𝑚𝑚𝑚𝑚𝑚𝑚 �1
2�∑ 𝑟𝑟𝑗𝑗

𝑓𝑓(𝜃𝜃)2𝑛𝑛𝑓𝑓
𝑗𝑗=1

1
2�∑ 𝑟𝑟𝑗𝑗𝑛𝑛(𝜃𝜃)2𝑛𝑛𝑚𝑚

𝑗𝑗=1 �

𝜃𝜃𝑙𝑙 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑛𝑛
                (18)  

 
𝑟𝑟𝑗𝑗
𝑓𝑓(𝜃𝜃) = 𝑓𝑓𝑛𝑛𝑛𝑛𝑚𝑚,𝑗𝑗(𝜃𝜃)−𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗
   𝑗𝑗 = 1,2, … ,𝑚𝑚𝑓𝑓                         (19)  

 

𝑟𝑟𝑗𝑗𝑛𝑛(𝜃𝜃) = ��1−𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗(𝜃𝜃)�
2

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗(𝜃𝜃)
   𝑗𝑗 = 1,2, … ,𝑚𝑚𝑛𝑛                            (20)  

where 𝑓𝑓1(𝜃𝜃) and 𝑓𝑓2(𝜃𝜃) are the first and the second sub-objective function of the multi-objective 
function approach, 𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑛𝑛 are the lower and upper limit of the search domain, 𝑟𝑟𝑗𝑗

𝑓𝑓(𝜃𝜃) and 
𝑟𝑟𝑗𝑗𝑛𝑛(𝜃𝜃) are the residuals associated with the natural frequencies and vibration modes 
respectively, 𝑚𝑚𝑓𝑓 and 𝑚𝑚𝑛𝑛 are the number of natural frequencies and vibration modes considered 
in the updating process, 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛,𝑗𝑗(𝜃𝜃) and 𝑓𝑓𝑣𝑣𝑒𝑒𝑒𝑒,𝑗𝑗 are the numerical and experimental natural 
frequencies associated with the vibration mode 𝑗𝑗 and 𝑀𝑀𝑀𝑀𝐶𝐶𝑗𝑗(𝜃𝜃) is the modal assurance criterion 
between the numerical and experimental vibration mode 𝑗𝑗 (Allemang and Brown, 1982). 
 
The optimization process consists of the following steps: (i) several solutions are randomly 
generated and the multi-objective function is evaluated; (ii) a new generation is created based 
on a ratio of selected solutions; (iii) the multi-objective function is evaluated in terms of this 
new generation; and (iv) the steps (ii) and (iii) are repeated iteratively until a previously defined 
stop criteria is met. Herein the roulette-wheel selection has been used as stochastic selection 
function (Mohamed et al., 2008). Each new generation is obtained through the crossover 
mechanism in which a new solution is obtained from two previous ones. Additionally, the 
mutation mechanism is used to explore new areas of the search domain (modifying randomly 
a design parameter of the considered new solution). As stop criteria, a maximum multi-
objective function tolerance of 10−5 has been considered. The optimization algorithms runs 
until the average relative change in the multi-objective function value is less than the 
established tolerance. As result of the optimization process, a Pareto’s front is obtained. Each 
point of the Pareto’s front reflects a possible optimal solution. Finally, as optimal solution, the 
point of the Pareto’s front which better balances the change of the two considered residuals is 
considered (Jin et al., 2014). 
 
Finally, the good results of the updating process are checked through the comparison of the 
experimental and numerical natural frequencies and modal shapes by computing the relative 
differences between the numerical and experimental natural frequencies, ∆𝑓𝑓𝑗𝑗(𝜃𝜃), and the modal 
assurance criterion, 𝑀𝑀𝑀𝑀𝐶𝐶𝑗𝑗(𝜃𝜃). 
 
The relative differences, ∆𝑓𝑓𝑗𝑗(𝜃𝜃), between natural frequencies may be defined as: 
  



∆𝑓𝑓𝑗𝑗(𝜃𝜃) = 𝑓𝑓𝑛𝑛𝑛𝑛𝑚𝑚,𝑗𝑗(𝜃𝜃)−𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗
∙ 100   𝑗𝑗 = 1,2, … ,𝑚𝑚𝑓𝑓                    (21)  

 
The modal assurance criterion𝑀𝑀𝑀𝑀𝐶𝐶𝑗𝑗(𝜃𝜃), , may be defined as: 
 

𝑀𝑀𝑀𝑀𝐶𝐶𝑗𝑗(𝜃𝜃) =
�𝜙𝜙𝑛𝑛𝑛𝑛𝑚𝑚,𝑗𝑗(𝜃𝜃)𝑇𝑇∙𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗(𝜃𝜃)�

2

�𝜙𝜙𝑛𝑛𝑛𝑛𝑚𝑚,𝑗𝑗(𝜃𝜃)𝑇𝑇∙𝜙𝜙𝑛𝑛𝑛𝑛𝑚𝑚,𝑗𝑗(𝜃𝜃)�∙�𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗(𝜃𝜃)𝑇𝑇∙𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗(𝜃𝜃)�
   𝑗𝑗 = 1,2, … ,𝑚𝑚𝑛𝑛                       (22)  

where 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛.𝑗𝑗(𝜃𝜃) and 𝜙𝜙𝑣𝑣𝑒𝑒𝑒𝑒.𝑗𝑗 are the numerical and experimental vibration modes to be 
compared, and 𝑇𝑇denotes the transpose. A good correlation between numerical and 
experimental vibration modes is achieved when their relative differences, ∆𝑓𝑓𝑗𝑗(𝜃𝜃), are below 
5.00 % and their𝑀𝑀𝑀𝑀𝐶𝐶𝑗𝑗(𝜃𝜃) ratios are above 0.90 (Zivanovic et al., 2007). The reliability of the 
modal parameters identified experimentally was carefully checked to avoid converge problems 
of the iterative process. In the same way, the grid of measurements was sufficiently dense to 
avoid spatial aliasing problems associated with the determination of the 𝑀𝑀𝑀𝑀𝐶𝐶𝑗𝑗(𝜃𝜃) ratio 
(Jiménez-Alonso et al., 2016). 
 
 


