
Supplemental Appendix

This appendix offers proofs of pure strategy perfect Bayesian equilibria of both the unidimen-
sional and multidimensional uncertainty games. I begin with the unidimensional uncertainty
version.

1 Equilibria of the Unidimensional Uncertainty Game

Assume P1 and P2 share a common discount factor δ, which is common knowledge. P1
remains uncertain of whether P2 is aggressive or benign, but there is no uncertainty regard-
ing time horizons. The manuscript describes four distinct equilibria, which I describe first
here. I then present three additional non-cooperative pooling equilibria, some of which rely
on nonintuitive off-path beliefs, and some of which are dominated by other equilibria. The
omitted equilibria do not undermine the conclusions derived from Proposition 3.

Lemma 1: P2∗
B = C1, C2; P2∗

A = D1, D2; P1∗ = C1, C2|C,D2|D; p2|C1 = 1; p2|D1 = 0
constitutes a perfect Bayesian equilibrium when p1 ≥ p∗ and δ < 1− H2A

E2A
.

Proof : This “cooperative separating equilibrium” obtains under two conditions: U1A:
p1 ≥ p∗ and U1B: δ < 1− H2A

E2A
.

In this equilibrium, P2B’s expected utility equals H2B(1+ δ). Defection would yield a payoff
of E2B, which is strictly less than H2B(1+δ) for a benign actor by assumption, as H2B > E2B.
For the aggressive P2, its equilibrium strategy yields a payoff of E2A. Conversely, coopera-
tion would yield a payoff of H2A + δ(E2A). Setting these payoffs equal, defection would be
P2A’s optimal strategy when δ < 1− H2A

E2a
, which is given by assumption U1B above.

Given P2’s equilibrium strategies, P1’s expected utility for cooperation is:

U1(C1) = p1(H1(1 + δ)) + (1− p1)(−S) (1)

Its expected utility for defection is:

U1(D1) = p1(E1 + δH1) (2)

Setting these two equal and solving for p1 yields the conditions under which P1 cooperates
in round 1:

p1 ≥
S1

H1 + S1 − E1

(3)
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The expression on the right hand side of this inequality is the p∗ cutpoint, so this condition
is satisfied by assumption U1B.

Since P2A and P2B separate, P1 is able to fully update its beliefs, so p2|C1 = 1 and
p2|D1 = 0. Given these posterior beliefs, P1∗ = C2 after observing cooperation and P1∗ = D2

after observing defection. P2A will defect in round 2 because defection is a dominant strat-
egy for the aggressive type in a one-shot game. P2B will cooperate in round 2 as it knows
P1 will reciprocate its own first round cooperation. �

Lemma 2: P2∗
B = C1, C2; P2∗

A = D1, D2; P1∗ = D1, C2|C,D2|D; p2|C = 1; p2|D = 0
constitutes a perfect Bayesian equilibrium when p1 < p∗ and S2

H2B
< δ < S2

E2A
.

Proof : The “non-cooperative separating equilibrium” obtains under two conditions: U2A:
p1 < p∗ and U2B: S2

H2B
< δ < S2

E2A
.

P2B’s expected utility in equilibrium is −S2 + δH2B. Conversely, defection in round 1 would
yield a payoff of zero. Setting these payoff equal shows that P2B will prefer to cooperate
when δ > S2

H2B
. This condition is satisfied by assumption U2B. For the aggressive type, its

expected utility in equilibrium is zero. Cooperating in round one would yield a payoff of
−S2 + δE2A. P2A’s equilibrium strategy is supported when δ < S2

E2B
, which is again give by

assumption U2B.

Since P2’s equilibrium strategies mirror those described in Lemma 1, P1’s expected utilities
are also the same. P1 will thus defect if p1 < p∗, which is given by assumption U2A.

Because benign and aggressive types separate, p2|C1 = 1 and p2|D1 = 0. As such, P1∗ = C2

after observing cooperation and P1∗ = D2 after observing defection. P2A will defect in
round 2 because defection is a dominant strategy for the aggressive type in a one-shot game.
P2B will cooperate in round 2 as it knows P1 will reciprocate its own first round cooperation.
�

Lemma 3: P2∗
B = C1, C2; P2∗

A = C1, D2; P1∗ = C1, C2|C,D2|D; p2|C = p1; p2|D < p∗

constitutes a perfect Bayesian equilibrium when p1 ≥ p∗ and δ > 1− H2A

E2A
.

Proof : The “cooperative pooling equilibrium” obtains under two conditions: U3A: p1 ≥ p∗

and U3B: δ > 1− H2A

E2A
.

In this equilibrium, P2B’s expected utility for cooperating is (1 + δ)H2B. This is its highest
possible payoff, so it is supportable in equilibrium. For P2A, its equilibrium strategy yields
a payoff of H2B + δE2B. Deviating to defection in round 1, given P1’s assumed off-path
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beliefs (p2|D < p∗), would yield a payoff of E2B. Setting these payoffs equal and solving for
δ reveals that P2A’s equilibrium strategy is supported given the satisfaction of condition U3B.

Given P2’s equilibrium strategies and assuming prior beliefs that support second round
cooperation (i.e. p1 ≥ p∗), P1’s expected utility of cooperating in Round 1 is:

U1(C1) = p1(H1(1 + δ)) + (1− p1)(H1 − δS1) (4)

It’s utility for defecting in round 1 would be:

U1(D1) = p1(E1 + δH1) + (1− p1)(E1 − δS1) (5)

And since H1 > E1 for P1, cooperation is its optimal strategy. Given P1’s priors, which
carry over in the pooling equilibria, P1 then again prefers to cooperate in round 2. P2A

will of course defect in round 2. P2B, knowing that P1’s optimistic priors will induce it to
cooperate in round 2, will then cooperate itself. �

Lemma 4: P2∗
B = D1, D2; P2∗

A = D1, D2; P1∗ = D1, C2|C,D2|D; p2|C ≥ p1; p2|D = p1

constitutes a perfect Bayesian equilibrium when p1 < p∗ and δ <
{

S2

H2B
, S2

E2A

}
.

Proof : This non-cooperative pooling equilibrium holds given the following conditions: U4A:

p1 < p∗ and U4B: δ <
{

S2

H2B
, S2

E2A

}
.

Given P1’s prior and off-path beliefs specified above, a benign P2’s equilibrium payoff here
equals zero. Conversely, its payoff for cooperating in round 1 would be δH2B−S2. Defection
is preferred when δ < S2

H2B
, which is given by condition U4B. Similarly, the aggressive type’s

equilibrium payoff is also zero. Deviating to cooperation would yield it a payoff of δE2B−S2.
Defection is preferred when δ < S2

E2A
, which is also given by condition U4B.

P1 will defect in round 2 after observing P2 defect, as this action is uninformative and
p1 < p∗ by U4A. In round 1, P1’s expected utility for cooperation is −S1, while its expected
utility for defection is zero. P1 thus defects in round 1. And as its pessimistic priors p1 < p∗

remain unchanged following P2’s pooling behavior, P1 defects again in round 2. �

1.1 Additional Equilibria

As mentioned in the text, there are three additional pure strategy pooling equilibria of the
unidimensional uncertainty game that either rely on potentially nonintuitive off-path beliefs
or are Pareto-dominated by other equilibria in the same parameter space. Importantly, each
of these equilibria involve all players defecting in round 1. As such, they do not undermine
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the result described in Proposition 3 in the text. This section briefly describes each of these
equilibria.

First, assuming p1 > p∗, it is an equilibrium for all players to defect in round 1. P1 and
P2B will then cooperate in round 2, while P2A defects. This holds across the entire param-
eter space when p1 > p∗, but the players all receive lower utilities than they would in the
cooperative pooling equilibrium described in the text. Second, assuming p1 < p∗ it is an
equilibrium for all players to defect in both rounds, so long as P1’s off-path beliefs are such
that it would not reciprocate P2’s cooperation in round 2. If p2|C < p∗, then complete de-
fection is a perfect Bayesian equilibrium. Finally, it is an equilibrium for all players to defect
in round 1, then for P1 to cooperate in round 2, while off-path it would defect in response
to first round cooperation. This equilibrium holds when p1 > p∗, but off-path would require
p2|C1 < p2|D = p1, which would be ruled out by the intuitive criterion.

Again, these three pooling equilibria were omitted from the main text because they either
relied on non-intuitive off-path beliefs, or they are Pareto dominated by other equilibria
described in the text. And to reiterate, all of these equilibria involve first-round defection
by all players, and as such do not undermine Proposition 3 as stated in the text. In the
unidimensional uncertainty game, sustained cooperation across both rounds is only possible
when p1 > p∗.

2 Equilibria of the Multidimensional Uncertainty Game

This section proves the existence of ten distinct pure strategy equilibria in the multidimen-
sional uncertainty game. Due to space constraints, the main text only described three of
these: two “far-sighted misrepresentation equilibria” (FSME) and a single “short-sighted
hedging equilibrium” (SSHE). I begin with these semi-separating equilibria, and move on
the separating and pooling equilibria.1

Lemma 5: P2∗
SB = C1, C2; P2∗

LB = C1, C2; P2∗
SA = D1, D2; P2∗

LA = C1, D2; P1∗ =
C1, C2|C,D2|D; p2|C = p1

1+q1(p1−1)
; p2|D = 0; q1 < H1−E1

(1−p1)(H1+S1−E1)
; q2|D = 1; q2|C =

q1p1
p1+(1−q1)p1

constitutes a perfect Bayesian equilibrium when p1 ≥
{

1− H1−E1

q1(H1+S1−E1)
, S1(1−q1)
H1−E1+S1(1−q1)

}
and δ2 < 1− H2A

E2A
.

Proof : This equilibrium is referred to in the text as the cooperative far-sighted misrepre-
sentation equilibrium. It holds under the following conditions:

1Recall that even the equilibria described here are not fully separating equilibria, as short-sighted and
far-sighted types do not separate. Nevertheless, since the paper is concerned with P1’s ability to distinguish
aggressive from benign types, I describe the strategy profiles with reference to their pooling/separating
behavior according to aggressive/benign preferences.
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M1A ≡ p1 ≥
{

1− H1 − E1

q1(H1 + S1 − E1)
,

S1(1− q1)
H1 − E1 + S1(1− q1)

}
(6)

M1B ≡ δ2 < 1− H2A

E2A

< δ2 (7)

Assume P1 cooperates in round 1 and then reciprocates P2’s first round action. Knowing
this, P2SB’s expected utility for first round cooperation is (1 + δ2)H2B. This is its highest
possible payoff, so this strategy is supported. P2LB’s expected utility for first round coop-
eration is (1 + δ2)H2B, which is likewise its highest possible payoff. P2LA’s expected utility
for cooperation is H2A + δ2E2A. Conversely, its payoff for defection is E2A. Cooperation is
supported in equilibrium when δ2 > 1 − H2A

E2A
, which is given by assumption M1B. P2SA’s

expected payoffs are identical, but swapping δ2 for δ2. Defection is supported in equilibrium
when δ2 < 1− H2A

E2A
, which is also given by assumption M1B.

For P1, given P2’s equilibrium strategies, its expected utility for first round cooperation is:

U1(C1) = p1(H1(1 + δ1)) + q1((1− p1)− S1) + (1− p1)(1− q1)(H1 − δ1S1) (8)

Conversely, its payoff for defection is:

U1(D1) = p1(E1 + δ1H1) + (1− p1)(1− q1)(E1 − δ1S1) (9)

Setting these two equal and solving for p1 shows that P1 will cooperate in round 1 in
equilibrium any time:

p1 > 1− H1 − E1

q1(H1 + S1 − E1)
(10)

This is assumed by M1A, so P1 cooperates in equilibrium. P1’s posterior beliefs are derived
straightforwardly by applying Bayes’ rule.

In round 2, both aggressive types of P2 will defect. P1 will cooperate if its posterior beliefs
surpass p∗:

p1
1 + q1(p1 − 1)

≥ S1

H1 + S1 − E1

(11)

This holds when:

p1 ≥
S1(1− q1)

H1 − E1 + S1(1− q1)
(12)
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This is given by assumption M1A, so P1 cooperates in round 2. Knowing this, both benign
types of P2 will also cooperate. �

Lemma 6: P2∗
SB = C1, C2; P2∗

LB = C1, C2; P2∗
SA = D1, D2; P2∗

LA = C1, D2; P1∗ =
D1, C2|C,D2|D; p2|C = p1

1+q1(p1−1)
; p2|D = 0; q1 < H1−E1

(1−p1)(H1+S1−E1)
; q2|D = 1; q2|C =

q1p1
p1+(1−q1)p1

constitutes a perfect Bayesian equilibrium when S1(1−q1)
H1+S1−E1−S1q1

< p1 < 1 −
H1−E1

q1(H1+S1−E1)
and S2

H2B
< δ < S2

E2A
< δ.

Proof : The non-cooperative far-sighted misrepresentation equilibrium in the text holds
under the following conditions:

M2A ≡
S1(1− q1)

H1 − E1 + S1(1− q1)
< p1 < 1− H1 − E1

q1(H1 + S1 − E1)
(13)

M2B ≡
S2

H2B

< δ <
S2

E2A

< δ (14)

Assume P1 adopts the equilibrium strategies described above. Given this, P2SB’s expected
utility for first round cooperation is δ2H2B − S2. Its expected utility for defection is zero.
Cooperation is supported in equilibrium when δ2 >

S2

H2B
, which is given by assumption M2B.

Similarly, P2LB’s utility for cooperation is δ2H2B − S2, while its utility for defection is zero.
Cooperation is again supported by M2B.

For P2LA, its expected utility for cooperation is δ2E2A − S2, while its payoff for defection is
zero. Cooperation is supported in equilibrium when δ2 >

S2

E2A
, which is given by assumption

M1B. P2SA’s expected payoff for cooperation is δ2E2A − S2, while its payoff for defection is
again zero. Defection holds in equilibrium when δ2 <

S2

E2A
, which is again assumed by M2B.

Thus, P2’s first round strategies described above hold in equilibrium.

Assume P2 adopts the strategies specified above. For P1, its expected utilities are the same
as in Lemma 5. It was shown above that defection would be supported in equilibrium any
time:

p1 < 1− H1 − E1

q1(H1 + S1 − E1)
(15)

This is given by assumption M2A above. P1’s second round strategy is calculated the same
way as Lemma 5. It will reciprocate defection, as p2|D1 = 0. Similarly, it will reciprocate
cooperation so long as p1 exceeds the threshold defined in equation 12 above. This is also
assumed in M2A. �
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Lemma 7: P2∗
SB = D1, D2; P2∗

LB = C1, C2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
D1, C2|C,D2|D; p2|C = 1; p2|D = p1q1

1−p1+p1q1
; q1 <

H1−E1

(1−p1)(H1+S1−E1)
; q1 < 1− S2

p1(H2−S2)
, q2|C =

0; q2|D = q1
(1−p1)+p1q1

constitutes a perfect Bayesian equilibrium when δ2 <
S2

H2B
< δ2 <

S2

E2A

and p1 <
{

S1

(1−q1)(H1+S1−E1)
, S1

q1(H1+S1)−E1

}
.

Proof : This is referred to as the short-sighted hedging equilibrium in the text. This equi-
librium holds under the following conditions:

M3A ≡ δ2 <
S2

H2B

< δ2 <
S2

E2A

(16)

M3B ≡ p1 <

{
S1

(1− q1)(H1 + S1 − E1)
,

S1

q1(H1 + S1)− E1

}
(17)

Assume P1 plays the strategies specified above. Given this, P2SA’s expected utility for de-
fection is zero. Its expected payoff for cooperation is δ2E2A − S2. Defection is supported
when δ2 <

S2

E2A
, which is given by assumption M3A. For P2LA, cooperation yields δ2E2A−S2,

while defection would yield zero. Defection is preferred when δ2 <
S2

E2A
, which is again given

by M3A.

For P2SB, first round defection yields zero, while cooperation yields δ2H2B − S2. Defection
is preferred when δ2 <

S2

H2B
, which is assumed by M3A. Finally, P2LB receives δ2H2B − S2

for cooperation, and zero for defection. Cooperation is preferred when δ2 ≥ S2

H2B
, which is

also assumed by M3A.

Assuming all types of P2 adopt the strategies described above, P1’s expected utilities are
as follows:

U1(C1) = (1− p1)(−S1) + p1q1(−S1) + p1(1− q1)(H1(1 + δ1)) (18)

U1(D1) = p1(1− q1)(E1 + δ1H1) (19)

Setting these equal reveals that P1 will defect when:

p1 <
S1

(1− q1)(H1 + S1 − E1)
(20)

This is assumed by M3B, so P1 defects in round 1.
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Given P2’s equilibrium strategies, p2|C = 1, so P1 will cooperate in round 2 after observing
P2 cooperate. Using Bayes’ rule, P1’s posterior beliefs after observing defection are:

p2|D1 =
p1q1

1− p1 + p1q1
(21)

Setting this equal to p∗ reveals that P1 will defect in round 2 after observing defection in
round 1 if:

p1 <
S1

q1(H1 + S1)− E1

(22)

This is assumed by M3B, so P1∗|D1 = D. �

Lemma 8: P2∗
SB = C1, C2; P2∗

LB = C1, C2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
C1, C2|C,D2|D; p2|C = 1; p2|D = 0; q1 ∈ (0, 1); q2|C = q1; q2|D = q1 constitutes a perfect
Bayesian equilibrium when p1 ≥ p∗ and δ2 < 1− H2A

E2A
.

Proof : This separating (by preferences, not time horizons) equilibrium holds under two
conditions:

M4A ≡ p1 ≥ p∗ (23)

M4B ≡ δ2 < 1− H2A

E2A

(24)

Assume P1 plays the equilibrium strategies described above. Given this, P2SB and P2LB

both receive their maximum utility by cooperating in round 1. P2LA receives H2A + δ2E2A

for cooperating and E2A if it defects. Defection is supported when δ2 < 1 − H2A

E2A
, which is

assumed by M4B. The same holds for P2SA, swapping δ2 for δ2. When δ2 falls below the
threshold defined in M4B, δ2 necessarily does so as well.

Given P2’s equilibrium strategies, P1’s expected utilities in round 1 are as follows:

U1(C1) = p1(H1(1 + δ1)) + (1− p1)(−S1) (25)

U1(D1) = p1(E1 + δ1H1) (26)

Setting these equal, P1 prefers to cooperate when p1 ≥ S1

H1+S1−E1
, or p1 ≥ p∗.
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Because both benign types of P2 cooperate while both aggressive types defect, p2|C = 1
and p2|D = 0. P1 thus cooperates in round 2 after observing cooperation, and defects after
observing defection. Because far-sighted and short-sighted types behave alike, irrespective
of their benign/aggressive strategies, P1 is unable to update its beliefs about q1. Its equilib-
rium strategies, however, are completely independent of q1. �

Lemma 9: P2∗
SB = C1, C2; P2∗

LB = C1, C2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
D1, C2|C,D2|D; p2|C = 1; p2|D = 0; q1 ∈ (0, 1); q2|C = q1; q2|D = q1 constitutes a perfect
Bayesian equilibrium when p1 < p∗ and S2

H2B
< {δ2, δ2} < S2

E2A
.

Proof : This separating equilibrium holds under two conditions:

M5A ≡ p1 < p∗ (27)

M5B ≡
S2

H2B

< {δ2, δ2} <
S2

E2A

(28)

Given the equilibrium strategies described above, P2SB’s expected utility for first round co-
operation is δ2H2B − S2, while defection yields an ultimate payoff of zero. Therefore, it will
cooperate when δ2 >

S2

H2B
. The far sighted benign type’s calculus is the same, swapping δ2

values. Cooperation is supported for both by M5B. For aggressive types, both receive zero
if they defect in round 1. Conversely, cooperation yields δ2E2A − S2. Defection is preferred
for both when {δ2, δ2} < S2

E2A
, which is assumed by M5B.

P1’s expected utilities are:

U1(C1) = p1(H1(1 + δ1)) + (1− p1)(−S1) (29)

U1(D1) = p1(E1 + δ1H1) (30)

Setting these equal, P1 will defect when p1 <
S1

H1+S1−E1
, or p1 < p∗. This is assumed by

M5A. And because both benign types cooperate while both aggressive types defect, p2|C = 1
and p2|D = 0. P1 thus cooperates in round 2 after observing cooperation, and defects after
observing defection. Because far-sighted and short-sighted types behave alike, irrespective
of their benign/aggressive strategies, P1 is unable to update its beliefs about q1. �

Lemma 10: P2∗
SB = C1, C2; P2∗

LB = C1, C2; P2∗
SA = C1, D2; P2∗

LA = C1, D2; P1∗ =
C1, C2|C,D2|D; p2|C = p1; p2|D < p∗; q1 ∈ (0, 1); q2|C = q1; q2|D ∈ (0, 1) constitutes a
perfect Bayesian equilibrium when p1 ≥ p∗ and {δ2, δ2} < 1− H2A

E2A
.

Proof : This pooling equilibrium holds under the following conditions:
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M6A ≡ p1 ≥ p∗ (31)

M6B ≡ {δ2, δ2} < 1− H2A

E2A

(32)

Given these strategies, both benign types reap their highest possible payoff by cooperating
in round 1. Aggressive types receive E2A for defecting and H2A + δ2E2A for cooperating. Co-
operation is thus supported in equilibrium for both aggressive types when {δ2, δ2} < 1− H2A

E2A
,

which is given by M6B.

For P1, given that p1 ≥ p∗ and P2’s pooling behavior prevents it from updating its priors,
it will act based only on its first round utilities. And since it knows all four types of P2
will cooperate, it will cooperate as well. Since all four types pool, p2|C = p1, and P1 will
cooperate in round 2. Off-path, this equilibrium assumes p2|D < p∗, which would lead P1
to defect after observing first round defection. �

Lemma 11: P2∗
SB = D1, D2; P2∗

LB = D1, D2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
D1, C2|C,D2|D; p2|C > p∗; p2|D = p1; q1 ∈ (0, 1); q2|D = q1; q2|C ∈ (0, 1) constitutes a
perfect Bayesian equilibrium when p1 < p∗ and {δ2, δ2} <

{
S2

H2B
, S2

E2A

}
.

Proof : This non-cooperative pooling equilibrium occurs under the following conditions:

M7A ≡ p1 < p∗ (33)

M7B ≡ {δ2, δ2} <
{
S2

H2B

,
S2

E2A

}
(34)

Given P1’s first round defection, the assumption that p1 < p∗ and P2’s pooling behavior,
benign types’ expected utility for defection is zero. Because it is assumed that p2|C > p∗,
cooperation would yield δ2H2B − S2. Defection is supported when {δ2, δ2} < S2

H2B
, which

is assumed by M7B. For aggressive types, defection also yields zero. Cooperation yields
δ2E2A − S2. Setting these equal, defection is supported when {δ2, δ2} < S2

E2A
. This is also

given by M7B.

For P1, since both types of P2 defect, and its pessimistic prior beliefs carry over into round
2, it prefers to defect in round 1, as defection yields zero, while cooperation yields −S1.
P1’s priors thus carry over in equilibrium: p2|D = p1 < p∗, so P1 defects in round 2. It is
assumed that p2|C > p∗, so off the equilibrium path P1 would reciprocate cooperation. In
equilibrium, q2|D = q1. And since P1’s second round decision is unaffected by P2’s time
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horizons, its off-path beliefs are irrelevant: q2|C ∈ (0, 1). �

Lemma 12: P2∗
SB = D1, D2; P2∗

LB = D1, D2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
D1, C2|C,C2|D; p2|C > p∗; p2|D > p∗; q1 ∈ (0, 1); q2|D = q1; q2|C ∈ (0, 1) constitutes a
perfect Bayesian equilibrium when p1 ≥ p∗.

Proof : This non-cooperative pooling equilibrium holds under a single condition: p1 ≥ p∗.
Given P1’s equilibrium strategy, benign P2’s expected utility for defection is δ2H2B, while
their expected utility for cooperation is δ2H2B − S2. Both thus prefer to defect. Aggressive
types’ expected utilities for defection is δ2E2A, while cooperation yields δ2E2A − S2. Again,
defection is preferred.

For P1, given that all types of P2 will defect in round 1, its preferred first round strat-
egy is defection. In equilibrium, its prior beliefs carry over due to P2’s pooling behavior, so
p2|D = p1. The second round interaction then becomes, in effect, a one-round game in which
it prefers to cooperate iff p1 ≥ p∗. So, in equilibrium, P1 prefers to cooperate in round 2
after observing defection in round 1 when p1 ≥ p∗. Off-path, P1 also prefers to cooperate
after observing cooperation in round 1, so it is assumed that p2|C ≥ p∗. q1 is immaterial in
this equilibrium. �

Lemma 13: P2∗
SB = D1, D2; P2∗

LB = D1, D2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
D1, D2|C,D2|D; p2|C < p∗; p2|D < p∗; q1 ∈ (0, 1); q2|D = q1; q2|C ∈ (0, 1) constitutes a
perfect Bayesian equilibrium when p1 < p∗.

Proof : This non-cooperative pooling equilibrium holds any time p1 < p∗. Given P1’s equi-
librium strategy, all four types of P2’s expected utility for defection is zero, while their
expected utility for cooperation is −S2. Both thus prefer to defect in round 1. And since
P1 defects in round 2 regardless of P2’s strategy in round 1, all four types will again defect
in round 2.

P1 faces a similar calculus. Knowing that all four types of P2 will defect in round 1, it will
also defect. Its posterior beliefs then carry over, so p2|D = p1. P1 will thus defect in round
2 whenever p1 < p∗, which is assumed. Off-path, it is assumed that p2|C < p∗, so P1 will
defect in round 2 even if P2 cooperates in round 1. �

Lemma 14: P2∗
SB = D1, C2; P2∗

LB = D1, C2; P2∗
SA = D1, D2; P2∗

LA = D1, D2; P1∗ =
D1, D2|C,C2|D; p2|C < p∗; p2|D = p1; q1 ∈ (0, 1); q2|D = q1; q2|C ∈ (0, 1) constitutes a
perfect Bayesian equilibrium when p1 > p∗.

Proof : This non-cooperative pooling equilibrium holds any time p1 > p∗. It depends on
implausible off-path beliefs such that p2|C < p2|D = p1. Given P1’s equilibrium strategy,
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benign types’ expected utility for defection equals δ2H2B, while their expected utility for
cooperation is −S2. Defection is preferred. For aggressive types, the expected utility for
defection is δ2E2A, while cooperation yields −S2. Again, defection is preferred.

For P1, first round defection is preferred because it knows that all four types of P2 will
defect. In round 2, P1 will then cooperate after observing defection, as p1 > p∗ and its prior
beliefs carry over in equilibrium. Off path, P1 defects in response to cooperation given its
non-intuitive beliefs: p2|C < {p1, p∗}. In equilibrium, because P1 cooperates in round 2,
both benign types of P2 will cooperate. Both aggressive types will therefore defect. �

3 Propositions

This section offers formal proofs of the informal propositions offered in the text. I restate
these proposition more formally here, before offering the proof.

Proposition 1a: In the far-sighted misrepresentation equilibrium, p2|C − p1 is increasing
in q1.

Proof : In the FSME, only the short-sighted aggressive type defects in round 1. All others
cooperate. Given this, using Bayes’ rule, P1’s posterior beliefs after observing C are:

p2|C =
p1

1 + q1(p1 − 1)
(35)

Taking the partial derivative with respect to q1 yields:

∂u

∂q1

(
p1

1 + q1(p1 − 1)

)
=

p1(1− p1)
1 + q1(p1 − 1)2

(36)

This expression is positive for all {q1, p1} > 0, so p2|C is increasing in q1. As such, p2|C − p1
is also increasing in q1. �

Corollary 1a: The range of p1 values supporting the far-sighted misrepresentation equilib-
rium is increasing in q1.

Proof : Follows from Proposition 1a.

Proposition 1b: The range of p1 values supporting the cooperative FSME is shrinking in
q1, while the range of p1 values supporting the non-cooperative FSME is increasing in q1.
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Proof : As described in the text, the cutpoint separating the cooperative and non-cooperative
FSME is:

p1 = 1− H1 − E1

q1(H1 + S1 − E1)
(37)

Taking the partial of this expression w.r.t. q1 yields:

∂u

∂q1

(
1− H1 − E1

q1(H1 + S1 − E1)

)
=

H1 − E1

q21(H1 + S1 − E1)
(38)

The latter expression is strictly positive given the assumption that H1 > E1, so the cutpoint
above which P1 cooperates in round 1 is increasing in q1. This shrinks the parameter space
supporting first round cooperation, and expands the parameter space supporting first round
defection. �

Proposition 2: In the short-sighted hedging equilibrium, |p1 − p2|D is decreasing in q1.

Proof : In the SSHE, P1’s posterior beliefs after observing defection are defined using Bayes’
rule as:

p2|D =
p1q1

1− p1 + p1q1
(39)

This expression is strictly less than p1, so lower values represent more informative signals.
Taking the partial w.r.t. q1 yields:

∂u

∂q1

(
p1q1

1− p1 + p1q1

)
=

p1(1− p1)
(1 + (q1 − 1)p1)2

(40)

This expression is strictly positive for all {q1, p1} > 0, so P1 revises its prior beliefs down-
ward to a lesser degree as q1 increases. �

Proposition 3: Mutual cooperation across both rounds of the game is possible across a
wider range of p1 values under the FSME than is possible in the unidimensional uncertainty
game.

Proof : Lemma 1 and Lemma 3 above demonstrated that, in the unidimensional uncertainty
game, mutual cooperation across both rounds of the game is only possible when p1 > p∗.
Conversely, Lemma 5 demonstrates that mutual cooperation across both rounds is possible
in the multidimensional uncertainty game when:

p1 ≥
{

1− H1 − E1

q1(H1 + S1 − E1)
,

S1(1− q1)
H1 − E1 + S1(1− q1)

}
(41)
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Both of these expressions are strictly less than p∗. Since sustained cooperation is possible in
the FSME when p1 is greater than these thresholds, this implies that cooperation is possible
across both rounds under a wider range of p1 values as compared to the unidimensional
uncertainty model. �
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