Treatment of SPR background in Total internal reflection ellipsometry. Characterization of RNA polymerase II films formation.

Journal Title
XX(X):??-??
©The Author(s) 2018
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

\$SAGE

Dušan Hemzal, Yu Ri Kang, Jan Dvořák, Tomasz Kabzinski, Karel Kubíček, Young Dong Kim and Josef Humlíček

Supplementary information

The matrix formalism for light propagation in layered structures. The propagation of light in a layered structure with planar interfaces produces no diffraction, and can, hence, be described by impact (E_i) , reflected (E_r) and transmitted (E_t) wave amplitudes of the electric field using simple matrix formalism:

$$\begin{bmatrix} E_{\rm i} \\ E_{\rm r} \end{bmatrix} = (\mathbf{V}_0)^{-1} (\mathbf{R}_1)^{-1} \dots (\mathbf{R}_m)^{-1} \mathbf{V}_{\rm f} \begin{bmatrix} E_{\rm t} \\ 0 \end{bmatrix} \equiv \mathbf{P} \begin{bmatrix} E_{\rm t} \\ 0 \end{bmatrix}, \tag{S1}$$

where matrices \mathbf{R}_j belong to j-th layer of the structure and matrices \mathbf{V} are connected with substrate (index $_0$) and ambient (index $_f$). The expression

$$(\mathbf{R}_j)^{-1} = \begin{pmatrix} \cos \theta_j & -\frac{\mathrm{i} \sin \theta_j}{\tilde{n}_j} \\ -\mathrm{i} \tilde{n}_j \sin \theta_j & \cos \theta_j \end{pmatrix}$$
 (S2)

is formally polarization independent (and $\det \mathbf{R}_j = 1$). Note, however, that the definition of \tilde{n}_j is polarization dependent itself:

$$s: \tilde{n}_j = n_j \cos \varphi_j$$
 $p: \tilde{n}_j = \frac{n_j}{\cos \varphi_i},$

where n_j is the index of refraction of j-th layer and

$$\cos \varphi_j = \sqrt{1 - \left(\frac{n_0 \sin \varphi}{n_j}\right)^2},$$

with φ_j being an angle at which the j-th layer is propagated. The phase acquired in a j-th layer is given by

$$\theta_j = 2\pi \frac{d_j}{\lambda} n_j \cos \phi_j,$$

where d_j is the thickness of the j-th layer and λ is the vacuum wavelength of incident light. For the V matrices we have

$$\mathbf{s}: \mathbf{V}_j = \begin{pmatrix} 1 & 1 \\ \tilde{n}_j & -\tilde{n}_j \end{pmatrix} \qquad \quad \mathbf{p}: \mathbf{V}_j = \cos \varphi_j \begin{pmatrix} 1 & 1 \\ \tilde{n}_j & -\tilde{n}_j \end{pmatrix}$$

which brings

$$s: (\mathbf{V}_0)^{-1} = -\frac{1}{2\tilde{n}_0} \begin{pmatrix} -\tilde{n}_0 & -1 \\ -\tilde{n}_0 & 1 \end{pmatrix} \qquad p: (\mathbf{V}_0)^{-1} = -\frac{1}{2\tilde{n}_0 \cos \varphi_0} \begin{pmatrix} -\tilde{n}_0 & -1 \\ -\tilde{n}_0 & 1 \end{pmatrix}.$$

The overall propagation matrix ${\bf P}$ from eq. (??) allows to compute the complex reflectivity through $r=P_{21}/P_{11}$ (distinguishing $r_{\rm s}$ and $r_{\rm p}$ by the appropriate entries of ${\bf P}$ for each of the polarizations) as well as the complex reflectivity ratio

$$\rho = r_{\rm p}/r_{\rm s}$$
.

2 Journal Title XX(X)

Figure 1. Notation for light propagation through a layered structure.

The difference ellipsometric spectra. The general propagation matrix from eq. (??) can be decomposed to $P = BV_f$ via

$$\mathbf{B} = (\mathbf{V}_0)^{-1} (\mathbf{R}_1)^{-1} \dots (\mathbf{R}_m)^{-1}.$$

Then, if another layer, described by matrix S, is added on the top of the substrate just below the ambient, the overall propagation matrix gets $P = \mathbf{BSV_f}$. In the following, we will gather the (in principle unknown) properties of the substrate into B and study only the effect of adding a new layer over this structure.

As the newly added we choose a thin layer of thickness t and index of refraction n (the light will propagate through the layer at angle ϕ) with $(\mathbf{R}^{-1})_{\text{thin}} \equiv \mathbf{S}$, where

$$\mathbf{S} \approx \begin{pmatrix} 1 & -\frac{\mathrm{i}}{\tilde{n}} \frac{2\pi}{\lambda} nt \cos \phi \\ -\mathrm{i}\tilde{n} \frac{2\pi}{\lambda} nt \cos \phi & 1 \end{pmatrix}$$

can be obtained using Taylor expansion with respect to t/λ of eq. (??).

We will now consider two measurements in terms of the complex reflectance ratio $\rho = \tan \Psi \exp(i\Delta)$ produced: the background measurement ρ_0 without the additional layer and the sample measurement ρ with the additional layer. If we denote the components of $\bf B$ according to

$$\mathbf{s} : \mathbf{B} \equiv \begin{pmatrix} a_{\mathbf{s}} & b_{\mathbf{s}} \\ c_{\mathbf{s}} & d_{\mathbf{s}} \end{pmatrix} \qquad \mathbf{p} : \mathbf{B} \equiv \begin{pmatrix} a_{\mathbf{p}} & b_{\mathbf{p}} \\ c_{\mathbf{p}} & d_{\mathbf{p}} \end{pmatrix},$$

then one obtains

$$\rho_0 = \frac{(d_{\rm p} n_{\rm f} + c_{\rm p} \cos \phi_{\rm f})(a_{\rm s} + b_{\rm s} n_{\rm f} \cos \phi_{\rm f})}{(b_{\rm p} n_{\rm f} + a_{\rm p} \cos \phi_{\rm f})(c_{\rm s} + d_{\rm s} n_{\rm f} \cos \phi_{\rm f})}$$

with

$$\Psi_0 = \arctan \left| \frac{(d_{\mathrm{p}} n_{\mathrm{f}} + c_{\mathrm{p}} \cos \phi_{\mathrm{f}})(a_{\mathrm{s}} + b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}})}{(b_{\mathrm{p}} n_{\mathrm{f}} + a_{\mathrm{p}} \cos \phi_{\mathrm{f}})(c_{\mathrm{s}} + d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}})} \right| \qquad \Delta_0 = \operatorname{Arg} \left(\frac{(d_{\mathrm{p}} n_{\mathrm{f}} + c_{\mathrm{p}} \cos \phi_{\mathrm{f}})(a_{\mathrm{s}} + b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}})}{(b_{\mathrm{p}} n_{\mathrm{f}} + a_{\mathrm{p}} \cos \phi_{\mathrm{f}})(c_{\mathrm{s}} + d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}})} \right)$$

and

$$\rho = \frac{\left(a_s + n_f b_s \cos \phi_f - 2\pi i n^2 \frac{t}{\lambda} b_s \cos^2 \phi - 2\pi i n_f \frac{t}{\lambda} a_s \cos \phi_f\right) \left(d_p n_f + c_p \cos \phi_f - 2\pi i n^2 \frac{t}{\lambda} d_p \cos \phi_f - 2\pi i n_f \frac{t}{\lambda} c_p \cos^2 \phi\right)}{\left(c_s + n_f d_s \cos \phi_f - 2\pi i n^2 \frac{t}{\lambda} d_s \cos^2 \phi - 2\pi i n_f \frac{t}{\lambda} c_s \cos \phi_f\right) \left(b_p n_f + a_p \cos \phi_f - 2\pi i \frac{t}{\lambda} n^2 b_p \cos \phi_f - 2\pi i n_f \frac{t}{\lambda} a_p \cos^2 \phi\right)}$$

As before, $\Psi = \arctan |\rho|$ and $\Delta = \operatorname{Arg}\rho$ and one can perform the Taylor expansion with respect to t/λ . Of course, $\rho|_{t/\lambda\to 0} = \rho_0$, and we will limit ourselves to linear expansion.

Consequently, in case of Ψ to treat the derivative with complex numbers right, we use $|\rho| = \sqrt{\rho \rho^*}$, where * denotes complex conjugation, and write

$$[\arctan \sqrt{\rho \rho *}]' = \frac{1}{1 + |\rho|^2} \frac{\rho' \rho^* + \rho \rho^{*'}}{2|\rho|} = \frac{1}{1 + |\rho|^2} \frac{\operatorname{Re}(\rho' \rho^*)}{|\rho|}.$$

Evaluating now the derivative near zero, one obtains

$$[\arctan\sqrt{\rho\rho^*}]'|_{t/\lambda\to 0} = \frac{1}{1+|\rho_0|^2} \frac{1}{|\rho_0|} \operatorname{Re}(\rho'\rho^*)|_{t/\lambda\to 0},$$

where

$$(\rho'\rho^*)|_{t/\lambda\to 0} = -2\pi i \begin{bmatrix} \frac{b_s n^2 \cos^2 \phi + a_s n_f \cos \phi_f}{a_s + b_s n_f \cos \phi_f} + \frac{d_p n^2 \cos \phi_f + c_p n_f \cos^2 \phi}{d_p n_f + c_p \cos \phi_f} - \frac{d_p n_f + c_p \cos \phi_f}{c_s + d_s n_f \cos \phi_f} - \frac{b_p n^2 \cos \phi_f + a_p n_f \cos^2 \phi}{b_p n_f + a_p \cos \phi_f} \end{bmatrix} |\rho_0|^2.$$

Denoting now

$$A = (d_{\rm p}n^2\cos\phi_{\rm f} + c_{\rm p}n_{\rm f}\cos^2\phi)(a_{\rm s} + b_{\rm s}n_{\rm f}\cos\phi_{\rm f}) + (b_{\rm s}n^2\cos^2\phi + a_{\rm s}n_{\rm f}\cos\phi_{\rm f})(d_{\rm p}n_{\rm f} + c_{\rm p}\cos\phi_{\rm f})$$

$$E = (b_{\rm p}n^2\cos\phi_{\rm f} + a_{\rm p}n_{\rm f}\cos^2\phi)(c_{\rm s} + d_{\rm s}n_{\rm f}\cos\phi_{\rm f}) + (d_{\rm s}n^2\cos^2\phi + c_{\rm s}n_{\rm f}\cos\phi_{\rm f})(b_{\rm p}n_{\rm f} + a_{\rm p}\cos\phi_{\rm f})$$

$$A_0 = (d_{\rm p}n_{\rm f} + c_{\rm p}\cos\phi_{\rm f})(a_{\rm s} + b_{\rm s}n_{\rm f}\cos\phi_{\rm f})$$

$$E_0 = (b_{\rm p}n_{\rm f} + a_{\rm p}\cos\phi_{\rm f})(c_{\rm s} + d_{\rm s}n_{\rm f}\cos\phi_{\rm f}),$$

one can write $\rho_0 = A_0/E_0$ and

$$\operatorname{Re}(\rho'\rho^*)|_{t/\lambda\to 0} = 2\pi\operatorname{Re}\left(-\mathrm{i}\left[\frac{A}{A_0} - \frac{E}{E_0}\right]\right)|\rho_0|^2 = 2\pi\operatorname{Im}\left(\frac{A}{A_0} - \frac{E}{E_0}\right)|\rho_0|^2,$$

so that we arrive to

$$\Psi = \Psi_0 + 2\pi \text{Im} \left(\frac{A}{A_0} - \frac{E}{E_0} \right) \frac{|\rho_0|}{1 + |\rho_0|^2} \frac{t}{\lambda} + \dots$$

Please note that A_0 and E_0 are introduced for convenience only and have no physical interpretation; in particular, they do not coincide with r_p and r_s .

Concerning Δ , we use the definition

$$Arg\rho = \arctan \frac{Im\rho}{Re\rho},$$

whence for the purposes of Taylor expansion

$$[\operatorname{Arg} z]' = \frac{1}{1 + \left(\frac{\operatorname{Im}\rho}{\operatorname{Re}\rho}\right)^2} \frac{\operatorname{Re}\rho \operatorname{Im}'\rho - \operatorname{Re}'\rho \operatorname{Im}\rho}{\operatorname{Re}^2\rho} = \frac{\operatorname{Re}\rho \operatorname{Im}'\rho - \operatorname{Re}'\rho \operatorname{Im}\rho}{|\rho|^2}.$$

Realizing now that $\operatorname{Re}\rho\operatorname{Im}'\rho-\operatorname{Re}'\rho\operatorname{Im}\rho=\operatorname{Im}(\rho'\rho^*)$ one can make use of the derivation of Ψ and write

$$\operatorname{Im}(\rho' \rho^*)|_{t/\lambda \to 0} = 2\pi \operatorname{Im} \left(-\mathrm{i} \left[\frac{A}{A_0} - \frac{E}{E_0} \right] \right) |\rho_0|^2 = -2\pi \operatorname{Re} \left(\frac{A}{A_0} - \frac{E}{E_0} \right) |\rho_0|^2,$$

so that

$$[\operatorname{Arg} z]'_{t/\lambda \to 0} = -2\pi \operatorname{Re} \left(\frac{A}{A_0} - \frac{E}{E_0} \right),\,$$

and, finally,

$$\Delta = \Delta_0 - 2\pi \operatorname{Re}\left(\frac{A}{A_0} - \frac{E}{E_0}\right)\frac{t}{\lambda} + \dots$$