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Supplementary information

The matrix formalism for light propagation in layered structures. The propagation of light in a layered structure with
planar interfaces produces no diffraction, and can, hence, be described by impact (F;), reflected (£;) and transmitted (E})
wave amplitudes of the electric field using simple matrix formalism:

E} = (Vo) 'R (Ry) MV {Eot] =P [Eot} , (S1)

where matrices R; belong to j-th layer of the structure and matrices V are connected with substrate (index o) and ambient
(index ¢). The expression
isin@;
J
1 cos b, —
(R;)™ = ’ n; (82)
—in;sing;  cosb;

is formally polarization independent (and detR; = 1). Note, however, that the definition of 7; is polarization dependent

itself:

S:Mj =N;jCoSY; p'ﬁ-:inj
) J J T cos ;)

where n; is the index of refraction of j-th layer and
nosing\ >
cospj = 1<0 SD) ,
nj
with ¢; being an angle at which the j-th layer is propagated. The phase acquired in a j-th layer is given by

0; = 27rijnj Cos ¢,
where d; is the thickness of the j-th layer and X is the vacuum wavelength of incident light.
For the V matrices we have

1 1 1 1
#:Vi= (ﬁj ﬁj) piVs = cosy; (ﬁj ﬁj)
which brings
1 —ng —1 1 —ng —1
s (V. —1 - ~0 - (V —1 - - ~0 .
s: (Vo) 27 (—no 1 p: (Vo) 2ngcosy \—No 1

The overall propagation matrix P from eq. (??) allows to compute the complex reflectivity through r = Ps1/Pi;
(distinguishing rs and r, by the appropriate entries of P for each of the polarizations) as well as the complex reflectivity
ratio

p=rp/Ts.
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Figure 1. Notation for light propagation through a layered structure.

The difference ellipsometric spectra. The general propagation matrix from eq. (??) can be decomposed to P = BV; via
B= (Vo) 'R) ... (R

Then, if another layer, described by matrix S, is added on the top of the substrate just below the ambient, the overall
propagation matrix gets P = BSV;. In the following, we will gather the (in principle unknown) properties of the substrate
into B and study only the effect of adding a new layer over this structure.
As the newly added we choose a thin layer of thickness ¢ and index of refraction n (the light will propagate through the
layer at angle ¢) with (R™1)pin = S, where
i2
1 — é Tt cos 0]
S ~ n A
2w
—in Tnt cos ¢ 1

can be obtained using Taylor expansion with respect to ¢/ of eq. (??).

We will now consider two measurements in terms of the complex reflectance ratio p = tan ¥ exp(iA) produced: the
background measurement py without the additional layer and the sample measurement p with the additional layer. If we
denote the components of B according to

. — ag bs . — ap bp
s.B(Cs ds> p.B(cp dp>’

Do = (dpne + ¢p cos ¢¢) (as + bsng cos ¢r)
0 (bpng + ap cos ¢r)(cs + dsmg cos ¢r)

then one obtains

with

(dpng + ¢p cos ér)(as + bsng cos ér)

Uy = arctan
0 (bpn + ap cos ¢r)(cs + dsng cos ¢r)

Ay = Arg ((dpnf + ¢p cos ) (as + bgng cos ¢f)>

(bpng + ap cos ¢r)(cs + dsng cos o)
and

(as +mnyrbscosgy — 27rin2§bS cos? ¢ — 27rinf§as cos ¢f) (dpnf +cpcospy — 27rin2§dp cos s — 27rinf§cp cos? (;5)

(cs +npdscos pp — 2min? % d, cos? ¢ — 2ming Leg cos pp) (bpny + ap cos gy — 2mitn2b, cos py — 2mingLa, cos? ¢)

As before, ¥ = arctan |p| and A = Argp and one can perform the Taylor expansion with respect to ¢/\. Of course,
plt/x—0 = po, and we will limit ourselves to linear expansion.

Consequently, in case of ¥ to treat the derivative with complex numbers right, we use |p| = v/pp*, where * denotes
complex conjugation, and write

,_ 1 plpt4pp” 1 Re(p'p")
R K R Ea T
Evaluating now the derivative near zero, one obtains
farctan /A5 o/ 50 = ——— ——Re(p'p") o/ 50
L+ [po|? |pol
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where

bsn? cos? ¢ + asng cos ¢r

dpn? cos ¢r + cpng cos® ¢ _
/% o as + bsng cos P¢ dyns + cp cos ¢ 2
(0P )eyp—0 = —2i dsn® cos® ¢ + csngcos ¢y bpn? cos ¢¢ + apng cos® ¢ [0~

¢s + dgng cos ¢

bpns + ap, cos ¢¢
Denoting now

A= (dpn2 cos ¢¢ + cpng cos? @) (as + bsng cos ¢r) + (bsn2 cos? ¢ + agng cos o¢)(dpns + cp cos ¢¢)

E = (bpn2 Ccos ¢¢ + apnys cos? ¢)(cs + dgng cos ¢g) + (dsn? cos® ¢ + cgng cos or) (bpns + ap cos ).
Ao = (dpns + ¢p cos ¢¢) (as + bsng cos o)

Ey = (bpng + ap cos ¢r)(cs + dsng cos ¢r),
one can write pg = Ag/Ep and

* A E
Re(p'p*)|i/x—0 = 27Re (—1 [

A E
£z 2 —ontm | 2= — 22 |pol?
N EO])W wm(AO E0>|,00|7

A E lpol t
V=¥yg+2rlm | — - — | ————=~+...
0 (Ao Eo) L+ |pol*> A
Please note that Ay and E are introduced for convenience only and have no physical interpretation; in particular, they do
not coincide with 7}, and 7.

Concerning A, we use the definition

so that we arrive to

Imp
Argp = arctan —-
rgp = arctan ,

€p
whence for the purposes of Taylor expansion

[Argz]’ = 1 _ RepIm';zRe’pImp _ Rep Im'p| —|2Re'p Imp‘
e :
ep

Realizing now that Rep Im’p — Re’pImp = Im(p’p*) one can make use of the derivation of ¥ and write

) A E A E
Im(p'p*)|¢/a0 = 2rIm | —i |-— — —1 ) |po|* = —27Re [ =—— — — | |po|®,
Ay Ep

Ay Ep
so that

A E
[Argz]; /5,0 = —27Re < ) )

Ay E
and, finally,

)yt
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