Treatment of SPR background in Total internal reflection ellipsometry. Characterization of RNA polymerase II films formation.

Dušan Hemzal, Yu Ri Kang, Jan Dvořák, Tomasz Kabzinski, Karel Kubíček, Young Dong Kim and Josef Humlíček

Supplementary information

The matrix formalism for light propagation in layered structures. The propagation of light in a layered structure with planar interfaces produces no diffraction, and can, hence, be described by impact $\left(E_{\mathrm{i}}\right)$, reflected $\left(E_{\mathrm{r}}\right)$ and transmitted $\left(E_{\mathrm{t}}\right)$ wave amplitudes of the electric field using simple matrix formalism:

$$
\left[\begin{array}{l}
E_{\mathrm{i}} \tag{S1}\\
E_{\mathrm{r}}
\end{array}\right]=\left(\mathbf{V}_{0}\right)^{-1}\left(\mathbf{R}_{1}\right)^{-1} \ldots\left(\mathbf{R}_{m}\right)^{-1} \mathbf{V}_{\mathrm{f}}\left[\begin{array}{c}
E_{\mathrm{t}} \\
0
\end{array}\right] \equiv \mathbf{P}\left[\begin{array}{c}
E_{\mathrm{t}} \\
0
\end{array}\right]
$$

where matrices \mathbf{R}_{j} belong to j-th layer of the structure and matrices \mathbf{V} are connected with substrate (index ${ }_{0}$) and ambient (index ${ }_{f}$). The expression

$$
\left(\mathbf{R}_{j}\right)^{-1}=\left(\begin{array}{cc}
\cos \theta_{j} & -\frac{\mathrm{i} \sin \theta_{j}}{\tilde{n}_{j}} \tag{S2}\\
-\mathrm{i} \tilde{n}_{j} \sin \theta_{j} & \cos \theta_{j}
\end{array}\right)
$$

is formally polarization independent (and $\operatorname{det} \mathbf{R}_{j}=1$). Note, however, that the definition of \tilde{n}_{j} is polarization dependent itself:

$$
\mathrm{s}: \tilde{n}_{j}=n_{j} \cos \varphi_{j} \quad \mathrm{p}: \tilde{n}_{j}=\frac{n_{j}}{\cos \varphi_{j}}
$$

where n_{j} is the index of refraction of j-th layer and

$$
\cos \varphi_{j}=\sqrt{1-\left(\frac{n_{0} \sin \varphi}{n_{j}}\right)^{2}}
$$

with φ_{j} being an angle at which the j-th layer is propagated. The phase acquired in a j-th layer is given by

$$
\theta_{j}=2 \pi \frac{d_{j}}{\lambda} n_{j} \cos \phi_{j}
$$

where d_{j} is the thickness of the j-th layer and λ is the vacuum wavelength of incident light.
For the \mathbf{V} matrices we have

$$
\mathrm{s}: \mathbf{V}_{j}=\left(\begin{array}{cc}
1 & 1 \\
\tilde{n}_{j} & -\tilde{n}_{j}
\end{array}\right) \quad \mathrm{p}: \mathbf{V}_{j}=\cos \varphi_{j}\left(\begin{array}{cc}
1 & 1 \\
\tilde{n}_{j} & -\tilde{n}_{j}
\end{array}\right)
$$

which brings

$$
\mathrm{s}:\left(\mathbf{V}_{0}\right)^{-1}=-\frac{1}{2 \tilde{n}_{0}}\left(\begin{array}{cc}
-\tilde{n}_{0} & -1 \\
-\tilde{n}_{0} & 1
\end{array}\right) \quad \mathrm{p}:\left(\mathbf{V}_{0}\right)^{-1}=-\frac{1}{2 \tilde{n}_{0} \cos \varphi_{0}}\left(\begin{array}{cc}
-\tilde{n}_{0} & -1 \\
-\tilde{n}_{0} & 1
\end{array}\right) .
$$

The overall propagation matrix \mathbf{P} from eq. (??) allows to compute the complex reflectivity through $r=P_{21} / P_{11}$ (distinguishing r_{s} and r_{p} by the appropriate entries of \mathbf{P} for each of the polarizations) as well as the complex reflectivity ratio

$$
\rho=r_{\mathrm{p}} / r_{\mathrm{s}}
$$

Figure 1. Notation for light propagation through a layered structure.

The difference ellipsometric spectra. The general propagation matrix from eq. (??) can be decomposed to $\mathbf{P}=\mathbf{B V}_{f}$ via

$$
\mathbf{B}=\left(\mathbf{V}_{0}\right)^{-1}\left(\mathbf{R}_{1}\right)^{-1} \ldots\left(\mathbf{R}_{m}\right)^{-1}
$$

Then, if another layer, described by matrix \mathbf{S}, is added on the top of the substrate just below the ambient, the overall propagation matrix gets $\mathbf{P}=\mathbf{B S V}_{\mathrm{f}}$. In the following, we will gather the (in principle unknown) properties of the substrate into \mathbf{B} and study only the effect of adding a new layer over this structure.

As the newly added we choose a thin layer of thickness t and index of refraction n (the light will propagate through the layer at angle ϕ) with $\left(\mathbf{R}^{-1}\right)_{\text {thin }} \equiv \mathbf{S}$, where

$$
\mathbf{S} \approx\left(\begin{array}{cc}
1 & -\frac{\mathrm{i}}{\tilde{n}} \frac{2 \pi}{\lambda} n t \cos \phi \\
-\mathrm{i} \tilde{n} \frac{2 \pi}{\lambda} n t \cos \phi & 1
\end{array}\right)
$$

can be obtained using Taylor expansion with respect to t / λ of eq. (??).
We will now consider two measurements in terms of the complex reflectance ratio $\rho=\tan \Psi \exp (\mathrm{i} \Delta)$ produced: the background measurement ρ_{0} without the additional layer and the sample measurement ρ with the additional layer. If we denote the components of \mathbf{B} according to

$$
\mathrm{s}: \mathbf{B} \equiv\left(\begin{array}{cc}
a_{\mathrm{s}} & b_{\mathrm{s}} \\
c_{\mathrm{s}} & d_{\mathrm{s}}
\end{array}\right) \quad \mathrm{p}: \mathbf{B} \equiv\left(\begin{array}{cc}
a_{\mathrm{p}} & b_{\mathrm{p}} \\
c_{\mathrm{p}} & d_{\mathrm{p}}
\end{array}\right)
$$

then one obtains

$$
\rho_{0}=\frac{\left(d_{\mathrm{p}} n_{\mathrm{f}}+c_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(a_{\mathrm{s}}+b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)}{\left(b_{\mathrm{p}} n_{\mathrm{f}}+a_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(c_{\mathrm{s}}+d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)}
$$

with

$$
\Psi_{0}=\arctan \left|\frac{\left(d_{\mathrm{p}} n_{\mathrm{f}}+c_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(a_{\mathrm{s}}+b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)}{\left(b_{\mathrm{p}} n_{\mathrm{f}}+a_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(c_{\mathrm{s}}+d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)}\right| \quad \Delta_{0}=\operatorname{Arg}\left(\frac{\left(d_{\mathrm{p}} n_{\mathrm{f}}+c_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(a_{\mathrm{s}}+b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)}{\left(b_{\mathrm{p}} n_{\mathrm{f}}+a_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(c_{\mathrm{s}}+d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)}\right)
$$

and
$\rho=\frac{\left(a_{s}+n_{f} b_{s} \cos \phi_{f}-2 \pi \mathrm{i} n^{2} \frac{t}{\lambda} b_{s} \cos ^{2} \phi-2 \pi \mathrm{i} n_{f} \frac{t}{\lambda} a_{s} \cos \phi_{f}\right)\left(d_{p} n_{f}+c_{p} \cos \phi_{f}-2 \pi \mathrm{i} n^{2} \frac{t}{\lambda} d_{p} \cos \phi_{f}-2 \pi \mathrm{i} n_{f} \frac{t}{\lambda} c_{p} \cos ^{2} \phi\right)}{\left(c_{s}+n_{f} d_{s} \cos \phi_{f}-2 \pi \mathrm{i} n^{2} \frac{t}{\lambda} d_{s} \cos ^{2} \phi-2 \pi \mathrm{i} n_{f} \frac{t}{\lambda} c_{s} \cos \phi_{f}\right)\left(b_{p} n_{f}+a_{p} \cos \phi_{f}-2 \pi \mathrm{i} \frac{t}{\lambda} n^{2} b_{p} \cos \phi_{f}-2 \pi \mathrm{i} n_{f} \frac{t}{\lambda} a_{p} \cos ^{2} \phi\right)}$.
As before, $\Psi=\arctan |\rho|$ and $\Delta=\operatorname{Arg} \rho$ and one can perform the Taylor expansion with respect to t / λ. Of course, $\left.\rho\right|_{t / \lambda \rightarrow 0}=\rho_{0}$, and we will limit ourselves to linear expansion.

Consequently, in case of Ψ to treat the derivative with complex numbers right, we use $|\rho|=\sqrt{\rho \rho^{*}}$, where $*$ denotes complex conjugation, and write

$$
[\arctan \sqrt{\rho \rho *}]^{\prime}=\frac{1}{1+|\rho|^{2}} \frac{\rho^{\prime} \rho^{*}+\rho \rho^{* \prime}}{2|\rho|}=\frac{1}{1+|\rho|^{2}} \frac{\operatorname{Re}\left(\rho^{\prime} \rho^{*}\right)}{|\rho|} .
$$

Evaluating now the derivative near zero, one obtains

$$
\left.[\arctan \sqrt{\rho \rho *}]^{\prime}\right|_{t / \lambda \rightarrow 0}=\left.\frac{1}{1+\left|\rho_{0}\right|^{2}} \frac{1}{\left|\rho_{0}\right|} \operatorname{Re}\left(\rho^{\prime} \rho^{*}\right)\right|_{t / \lambda \rightarrow 0}
$$

where

$$
\left.\left(\rho^{\prime} \rho^{*}\right)\right|_{t / \lambda \rightarrow 0}=-2 \pi \mathrm{i}\left[\begin{array}{c}
\frac{b_{\mathrm{s}} n^{2} \cos ^{2} \phi+a_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}}{a_{\mathrm{s}}+b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}}+\frac{d_{\mathrm{p}} n^{2} \cos \phi_{\mathrm{f}}+c_{\mathrm{p}} n_{\mathrm{f}} \cos ^{2} \phi}{d_{\mathrm{p}} n_{\mathrm{f}}+c_{\mathrm{p}} \cos \phi_{\mathrm{f}}} \\
-\frac{d_{\mathrm{s}} n^{2} \cos ^{2} \phi+c_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}}{c_{\mathrm{s}}+d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}}-\frac{b_{\mathrm{p}} n^{2} \cos \phi_{\mathrm{f}}+a_{\mathrm{p}} n_{\mathrm{f}} \cos ^{2} \phi}{b_{\mathrm{p}} n_{\mathrm{f}}+a_{\mathrm{p}} \cos \phi_{\mathrm{f}}}
\end{array}\right]\left|\rho_{\mathrm{o}}\right|^{2} .
$$

Denoting now

$$
\begin{gathered}
A=\left(d_{\mathrm{p}} n^{2} \cos \phi_{\mathrm{f}}+c_{\mathrm{p}} n_{\mathrm{f}} \cos ^{2} \phi\right)\left(a_{\mathrm{s}}+b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)+\left(b_{\mathrm{s}} n^{2} \cos ^{2} \phi+a_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)\left(d_{\mathrm{p}} n_{\mathrm{f}}+c_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right) \\
E=\left(b_{\mathrm{p}} n^{2} \cos \phi_{\mathrm{f}}+a_{\mathrm{p}} n_{\mathrm{f}} \cos ^{2} \phi\right)\left(c_{\mathrm{s}}+d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)+\left(d_{\mathrm{s}} n^{2} \cos ^{2} \phi+c_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right)\left(b_{\mathrm{p}} n_{\mathrm{f}}+a_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right) . \\
A_{0}=\left(d_{\mathrm{p}} n_{\mathrm{f}}+c_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(a_{\mathrm{s}}+b_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right) \\
E_{0}=\left(b_{\mathrm{p}} n_{\mathrm{f}}+a_{\mathrm{p}} \cos \phi_{\mathrm{f}}\right)\left(c_{\mathrm{s}}+d_{\mathrm{s}} n_{\mathrm{f}} \cos \phi_{\mathrm{f}}\right),
\end{gathered}
$$

one can write $\rho_{0}=A_{0} / E_{0}$ and

$$
\left.\operatorname{Re}\left(\rho^{\prime} \rho^{*}\right)\right|_{t / \lambda \rightarrow 0}=2 \pi \operatorname{Re}\left(-\mathrm{i}\left[\frac{A}{A_{0}}-\frac{E}{E_{0}}\right]\right)\left|\rho_{0}\right|^{2}=2 \pi \operatorname{Im}\left(\frac{A}{A_{0}}-\frac{E}{E_{0}}\right)\left|\rho_{0}\right|^{2}
$$

so that we arrive to

$$
\Psi=\Psi_{0}+2 \pi \operatorname{Im}\left(\frac{A}{A_{0}}-\frac{E}{E_{0}}\right) \frac{\left|\rho_{0}\right|}{1+\left|\rho_{0}\right|^{2}} \frac{t}{\lambda}+\ldots
$$

Please note that A_{0} and E_{0} are introduced for convenience only and have no physical interpretation; in particular, they do not coincide with r_{p} and r_{s}.

Concerning Δ, we use the definition

$$
\operatorname{Arg} \rho=\arctan \frac{\operatorname{Im} \rho}{\operatorname{Re} \rho},
$$

whence for the purposes of Taylor expansion

$$
[\operatorname{Arg} z]^{\prime}=\frac{1}{1+\left(\frac{\operatorname{Im} \rho}{\operatorname{Re} \rho}\right)^{2}} \frac{\operatorname{Re} \rho \operatorname{Im}^{\prime} \rho-\operatorname{Re}^{\prime} \rho \operatorname{Im} \rho}{\operatorname{Re}^{2} \rho}=\frac{\operatorname{Re} \rho \operatorname{Im}^{\prime} \rho-\operatorname{Re}^{\prime} \rho \operatorname{Im} \rho}{|\rho|^{2}}
$$

Realizing now that $\operatorname{Re} \rho \operatorname{Im}^{\prime} \rho-\operatorname{Re}^{\prime} \rho \operatorname{Im} \rho=\operatorname{Im}\left(\rho^{\prime} \rho^{*}\right)$ one can make use of the derivation of Ψ and write

$$
\left.\operatorname{Im}\left(\rho^{\prime} \rho^{*}\right)\right|_{t / \lambda \rightarrow 0}=2 \pi \operatorname{Im}\left(-\mathrm{i}\left[\frac{A}{A_{0}}-\frac{E}{E_{0}}\right]\right)\left|\rho_{0}\right|^{2}=-2 \pi \operatorname{Re}\left(\frac{A}{A_{0}}-\frac{E}{E_{0}}\right)\left|\rho_{0}\right|^{2}
$$

so that

$$
[\operatorname{Arg} z]_{t / \lambda \rightarrow 0}^{\prime}=-2 \pi \operatorname{Re}\left(\frac{A}{A_{0}}-\frac{E}{E_{0}}\right)
$$

and, finally,

$$
\Delta=\Delta_{0}-2 \pi \operatorname{Re}\left(\frac{A}{A_{0}}-\frac{E}{E_{0}}\right) \frac{t}{\lambda}+\ldots
$$

