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Supplementary information
The matrix formalism for light propagation in layered structures. The propagation of light in a layered structure with
planar interfaces produces no diffraction, and can, hence, be described by impact (Ei), reflected (Er) and transmitted (Et)
wave amplitudes of the electric field using simple matrix formalism:[

Ei

Er

]
= (V0)−1(R1)−1 . . . (Rm)−1Vf

[
Et

0

]
≡ P

[
Et

0

]
, (S1)

where matrices Rj belong to j-th layer of the structure and matrices V are connected with substrate (index 0) and ambient
(index f ). The expression

(Rj)
−1 =

 cos θj − i sin θj
ñj

−iñj sin θj cos θj

 (S2)

is formally polarization independent (and detRj = 1). Note, however, that the definition of ñj is polarization dependent
itself:

s : ñj = nj cosϕj p : ñj =
nj

cosϕj
,

where nj is the index of refraction of j-th layer and

cosϕj =

√
1−

(
n0 sinϕ

nj

)2

,

with ϕj being an angle at which the j-th layer is propagated. The phase acquired in a j-th layer is given by

θj = 2π
dj
λ
nj cosφj ,

where dj is the thickness of the j-th layer and λ is the vacuum wavelength of incident light.
For the V matrices we have

s : Vj =

(
1 1
ñj −ñj

)
p : Vj = cosϕj

(
1 1
ñj −ñj

)
which brings

s : (V0)−1 = − 1

2ñ0

(
−ñ0 −1
−ñ0 1

)
p : (V0)−1 = − 1

2ñ0 cosϕ0

(
−ñ0 −1
−ñ0 1

)
.

The overall propagation matrix P from eq. (??) allows to compute the complex reflectivity through r = P21/P11

(distinguishing rs and rp by the appropriate entries of P for each of the polarizations) as well as the complex reflectivity
ratio

ρ = rp/rs.
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Figure 1. Notation for light propagation through a layered structure.

The difference ellipsometric spectra. The general propagation matrix from eq. (??) can be decomposed to P = BVf via

B = (V0)−1(R1)−1 . . . (Rm)−1.

Then, if another layer, described by matrix S, is added on the top of the substrate just below the ambient, the overall
propagation matrix gets P = BSVf . In the following, we will gather the (in principle unknown) properties of the substrate
into B and study only the effect of adding a new layer over this structure.

As the newly added we choose a thin layer of thickness t and index of refraction n (the light will propagate through the
layer at angle φ) with (R−1)thin ≡ S, where

S ≈

 1 − i

ñ

2π

λ
nt cosφ

−iñ
2π

λ
nt cosφ 1


can be obtained using Taylor expansion with respect to t/λ of eq. (??).

We will now consider two measurements in terms of the complex reflectance ratio ρ = tan Ψ exp(i∆) produced: the
background measurement ρ0 without the additional layer and the sample measurement ρ with the additional layer. If we
denote the components of B according to

s : B ≡
(
as bs
cs ds

)
p : B ≡

(
ap bp
cp dp

)
,

then one obtains

ρ0 =
(dpnf + cp cosφf)(as + bsnf cosφf)

(bpnf + ap cosφf)(cs + dsnf cosφf)

with

Ψ0 = arctan

∣∣∣∣ (dpnf + cp cosφf)(as + bsnf cosφf)

(bpnf + ap cosφf)(cs + dsnf cosφf)

∣∣∣∣ ∆0 = Arg

(
(dpnf + cp cosφf)(as + bsnf cosφf)

(bpnf + ap cosφf)(cs + dsnf cosφf)

)
and

ρ =

(
as + nfbs cosφf − 2πin2 tλbs cos2 φ− 2πinf

t
λas cosφf

) (
dpnf + cp cosφf − 2πin2 tλdp cosφf − 2πinf

t
λcp cos2 φ

)(
cs + nfds cosφf − 2πin2 tλds cos2 φ− 2πinf

t
λcs cosφf

) (
bpnf + ap cosφf − 2πi tλn

2bp cosφf − 2πinf
t
λap cos2 φ

) .
As before, Ψ = arctan |ρ| and ∆ = Argρ and one can perform the Taylor expansion with respect to t/λ. Of course,
ρ|t/λ→0 = ρ0, and we will limit ourselves to linear expansion.

Consequently, in case of Ψ to treat the derivative with complex numbers right, we use |ρ| =
√
ρρ∗, where ∗ denotes

complex conjugation, and write

[arctan
√
ρρ∗]′ =

1

1 + |ρ|2
ρ′ρ∗ + ρρ∗′

2|ρ|
=

1

1 + |ρ|2
Re(ρ′ρ∗)

|ρ|
.

Evaluating now the derivative near zero, one obtains

[arctan
√
ρρ∗]′|t/λ→0 =

1

1 + |ρ0|2
1

|ρ0|
Re(ρ′ρ∗)|t/λ→0,
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where

(ρ′ρ∗)|t/λ→0 = −2πi


bsn

2 cos2 φ+ asnf cosφf
as + bsnf cosφf

+
dpn

2 cosφf + cpnf cos2 φ

dpnf + cp cosφf
−

−dsn
2 cos2 φ+ csnf cosφf
cs + dsnf cosφf

− bpn
2 cosφf + apnf cos2 φ

bpnf + ap cosφf

 |ρ0|2.
Denoting now

A = (dpn
2 cosφf + cpnf cos2 φ)(as + bsnf cosφf) + (bsn

2 cos2 φ+ asnf cosφf)(dpnf + cp cosφf)

E = (bpn
2 cosφf + apnf cos2 φ)(cs + dsnf cosφf) + (dsn

2 cos2 φ+ csnf cosφf)(bpnf + ap cosφf).

A0 = (dpnf + cp cosφf)(as + bsnf cosφf)

E0 = (bpnf + ap cosφf)(cs + dsnf cosφf),

one can write ρ0 = A0/E0 and

Re(ρ′ρ∗)|t/λ→0 = 2πRe

(
−i

[
A

A0
− E

E0

])
|ρ0|2 = 2πIm

(
A

A0
− E

E0

)
|ρ0|2,

so that we arrive to

Ψ = Ψ0 + 2πIm

(
A

A0
− E

E0

)
|ρ0|

1 + |ρ0|2
t

λ
+ . . .

Please note that A0 and E0 are introduced for convenience only and have no physical interpretation; in particular, they do
not coincide with rp and rs.

Concerning ∆, we use the definition

Argρ = arctan
Imρ

Reρ
,

whence for the purposes of Taylor expansion

[Argz]′ =
1

1 +
(

Imρ
Reρ

)2 Reρ Im′ρ− Re′ρ Imρ

Re2ρ
=

Reρ Im′ρ− Re′ρ Imρ

|ρ|2
.

Realizing now that Reρ Im′ρ− Re′ρ Imρ = Im(ρ′ρ∗) one can make use of the derivation of Ψ and write

Im(ρ′ρ∗)|t/λ→0 = 2πIm

(
−i

[
A

A0
− E

E0

])
|ρ0|2 = −2πRe

(
A

A0
− E

E0

)
|ρ0|2,

so that

[Argz]′t/λ→0 = −2πRe

(
A

A0
− E

E0

)
,

and, finally,

∆ = ∆0 − 2πRe

(
A

A0
− E

E0

)
t

λ
+ . . .
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