Supplementary materials for

The effect and optimal parameters of repetitive transcranial magnetic stimulation (rTMS) on motor recovery in stroke patients: A systematic review and meta-analysis of randomized controlled trials

Huifang Xiang¹, MD, Jing Sun², MD, Xiang Tang³, MD, Kebin Zeng, MD, PhD, Xiushu Wu, MD

This PDF file includes:

the appendix

- TABLE 1 characteristics of the included studies
- TABLE 2 PEDro scores of included articles
- **Fig S1.** Forest plot from the meta-analysis of rTMS on motor evoked potentials showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- **Fig S2.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different active motor threshold (AMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- **Fig S3.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different resting motor threshold (RMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- **Fig S4.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation pulses rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- **Fig S5.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation frequency rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- **Fig S6.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sessions rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- **Fig S7.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sites rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.
- Fig S8. Forest plot from the meta-analysis of rTMS on limb motor function showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- Fig S9. Forest plot from the meta-analysis of rTMS on motor evoked potentials showing estimates of effect size (SMD) with 95% confidence intervals after the

- removal of the cross-over study.
- **Fig S10.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing active motor threshold and resting motor threshold rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S11.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different active motor threshold (AMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S12.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different resting motor threshold (RMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S13.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation pulses rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S14.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation frequency rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S15.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sessions rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S16.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sites rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S17.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing early stroke(within 30 days) and chronic stroke(>30 days) showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.
- **Fig S18.** Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing pure subcortical stroke and including cortical stroke showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.

Supplementary materials

Appendix:

Literature search strategy used for the PubMed database.

#1 Patient

"Stroke" [Abstract] OR "Strokes" OR "Cerebrovascular Accident" OR

"Cerebrovascular Accidents" OR "Cerebrovascular Stroke" OR

"Cerebrovascular Strokes" OR "Stroke, Cerebrovascular" OR "Strokes,

Cerebrovascular" OR "Cerebral Stroke" OR "Cerebral Strokes"

#2 Intervention

"Transcranial magnetic stimulation" [Abstract] OR "Transcranial Magnetic

Stimulations" OR "rTMS" OR "repetitive transcranial magnetic stimulation"

#3 Type of study

#3) Randomized controlled trial[pt] OR controlled clinical trial[pt] OR

randomized controlled trials[mh] OR clinical trial[pt] OR clinical trials[mh] OR

(" clinical trial " [tw]) OR cross-over studies[mh] OR control*[tw] OR

prospectiv*[tw] OR volunteer*[tw] OR crossover studies [mh]

Search #1 and #2 and #3

Publication date: January 2005 and December 2018

TABLE 1 characteristics of the included studies

Study	N	stroke time	e stroke age	frequency	a(r)MT(%)	Pulses	Sessions	Outcome	Location	
			(years)	(hertz)						
J.Du2016	23/23/23	3-30d	53.61±13.55	1/3	110-120 R/80-90 R	1200	5	FMA,BI,MEP	cortex/sub-cortex	
Lüdemann Podubecká	2016 10/10	30±7.5c	1 71.9±7.9	1	110 R	900	1	JHFT, rMT, MEP	cortex/sub-cortex	
Kirton2008	5/5	6.33y	10.08-16.78	1	100 R	1200	8	MAUEF	sub-cortex	
Conforto2012	15/14	5-45d	54.8±11.7/56.7±14.	8 1	90 R	1500	10	JTT	cortex/sub-cortex	
Sasaki2013	9/11/9	6-29d	65±10	10/1	90 R	1000/1800	5	TF	cortex/sub-cortex	
Talelli2012	13/12/12/12	>1y	54.4±15.8/59.4±12.4	TBS	90 A	600	10	JTT	cortex/sub-cortex	
Chang2012	9/8	>3m	58.1/59.5	10	90 R	1000	10	JHFT	cortex/sub-cortex	
Hsu2013	6/6	2-4w	$54.8{\pm}11.7/62.3{\pm}8.5$	TBS	80 A	1200	10	MEP, FMA	cortex/sub-cortex	
Sung2013	15/12/13/14	3-12 m	35-85	1/TBS	90 R/80 A	600	20	FMA, WMFT,FT	cortex/sub-cortex	
Etoh2013	9/9	5-60m	59.7±11	1	90 R	240	10	FMA	cortex/sub-cortex	
Gillick2014	10/9	congenital	8-17	1	90 R	600	5	AHA	cortex/sub-cortex	
DiLazzaro2013	6/6	>1y	59.5±12.4/57.5±12.3	TBS	80 A	600	10	JTT	cortex/sub-cortex	
Ackerley2014	12/12	≥6m	69±8	TBS	90 A	600	1	PPT	cortex/sub-cortex	
CC Wang2014	16/14/14	3-12m	$62.38{\pm}12.09/68.00{\pm}12.5$	1 1	90 R	600	10	FMA	cortex/sub-cortex	
Lüdemann Podubecká	2015 11/12/9/8	≥6m	$68.3{\pm}10.8/65.7{\pm}9.9$	1	100 R	900	15	WMFT, FT	cortex/sub-cortex	
CJ Zheng2015	55/53	1-4w	$65.4{\pm}13.5/66.2\pm13.1$	1	90 R	1800	24	FMA, MEP	cortex/sub-cortex	
Matsuura2015	10/10	4-21d	$72.2{\pm}6.0/74.7{\pm}12.7$	1	100 R	1200	5	FMA, MEP	sub-cortex	
Blesneag AV2015	8/8	10 d	69±5.8/69.13±7.2	1	120 R	1200	10	FMA,MEP	cortex/sub-cortex	
Avenanti A2012	8/8/14	>6m	60.9±8.8/64±7.7/64±12.1	1	90 R	1500	10	JHFT, rMT	cortex/sub-cortex	
DKRose2014	9/10	>6m	64.7±7.0	1	100R	1200	16	FMA	1	
WangCP2014	17/15/16	2-6m	62.2±12/-62.5±13.4	1/TBS	90R/80A	600	10	FMA, MEP,rMT	cortex/sub-cortex	
Emara2010	20/20/20	>1m	$50.9 \pm 10.3 - 55.9 \pm 6.1$	1/5	110-120/80-90R	150/750	10	FT, AI	cortex/sub-cortex	
Lomarev2007	7	1-5y	35–65	20	120 R	160	1	PF, MEP	cortex/sub-cortex	
Mansur2005	7	12m	37–73	1	100 R	600	2	PPT	cortex/sub-cortex	
Ameli2009	13/16	1-88w	56±13	10	80 R	1000	1	FT	cortex/sub-cortex	
Dafotakis2008	12/12	>1m	45±9	1	100 R	600	2	GP	sub-cortex	
Fregni2006	10/5	>1y	56±11.5	1	100 R	1200	5	PPT	cortex/sub-cortex	
Khedr2009	12/12/12	7-20d	57.9±11	1/3	130/100 R	900	5	BI, MEP,KT	cortex/sub-cortex	
Khedr2010	12/13/13	5-15d	59.52±13.1	3/10	130/100 R	750	5	HG, MEP	cortex/sub-cortex	
Liepert2007	6/6	<14d	63±11	1	90 R	1200	1	NHPT	sub-cortex	
Malcolm2007	9/10	>1y	$68.4 \pm 8.4/65.7 \pm 5.1$	20	90 A	2000	10	WMFT	cortex/sub-cortex	
Pomeroy2007	6/7	1-12w	41-95	1	120 R	200	8	ARAT	cortex/sub-cortex	
Takeuchi2005	10/10	≥6m	59.0±9.6	1	90 R	1500	1	PC, rMT	sub-cortex	
Takeuchi2008	10/10	≥6m	61.2±9.7/63.4±7.4	1	90 R	1500	1	PC, rMT	sub-cortex	
Talelli2007	6/6	->1y	61.2±13.6	TBS	80 A	600	1	SRT	cortex/sub-cortex	
Theilig2011	12/12	2w-58m	61±13	1	100 R	900	10	WMFT,MEP	cortex/sub-cortex	
Nowak2008	15/15	1-4m	46±8	1	100 R	600	1	Wrist Velocity	sub-cortex	
Hosomi2016	18/21	8w	62.9±13.8	5	90 R	500	10	FMA	cortex/sub-cortex	
Sasaki2017		ow 1.2±7.3d		10	90 R 90 R	1000	10	BRS		
									sub-cortex	
Guan2017		.6±3.7d		5	120 R	1000	10	BI,FMA	sub-cortex	
Huang2017		0-90d		1	120 A	900	15	BI,FMA	cortex/sub-corte	
Zhao2017				1	70	1200	14	FMA	/	
Rastgoo2016	17/17	>6m	54.6±11.7/49.7±11	1	90	1000	5	FMA	cortex/sub-cortex	

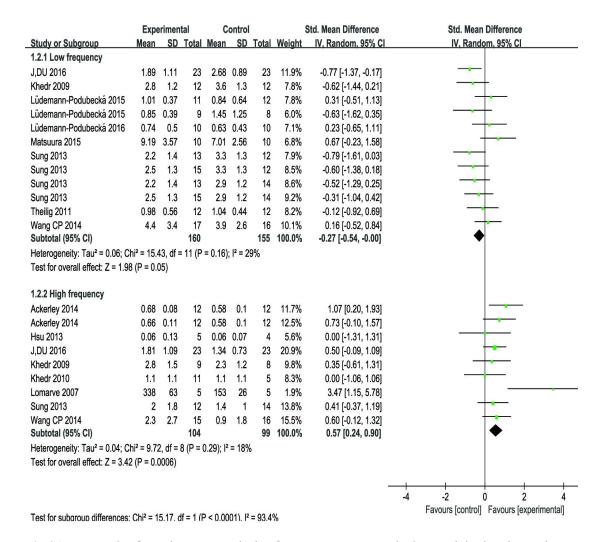
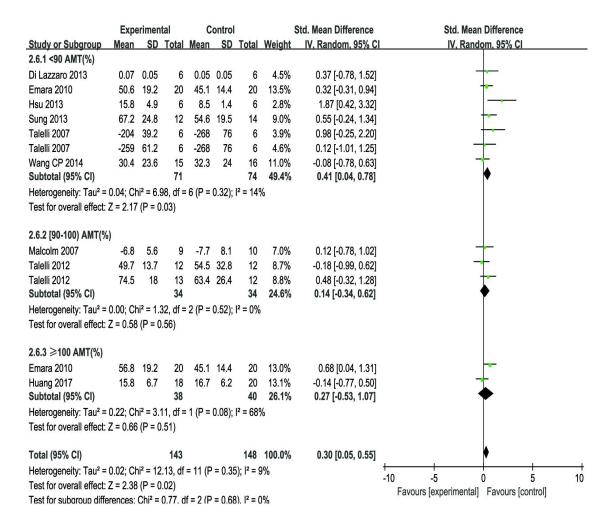
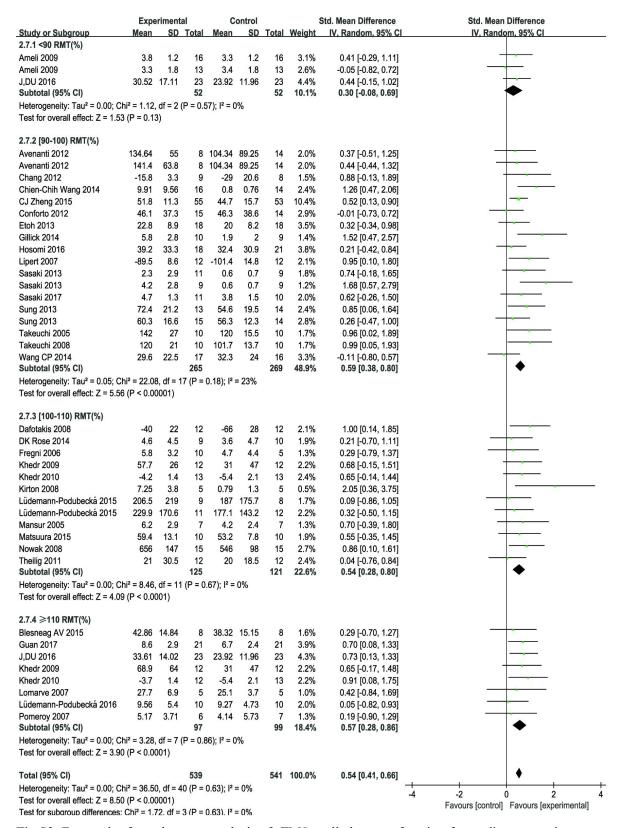
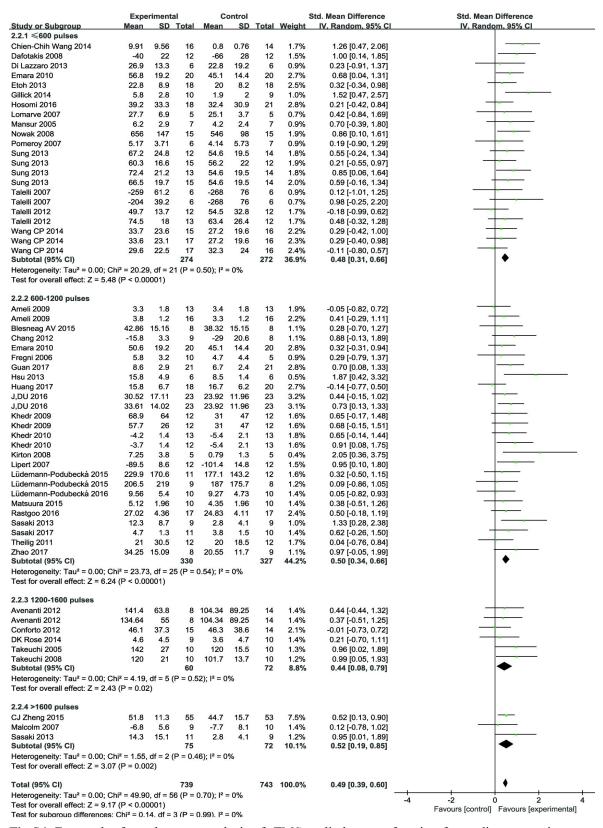

JTT=Jebsen-Taylor-Test, JHFT=Jebsen hand function test, MEP=motor evoked potential, WMFT=Wolf Motor Function Test, BI=Barthel Index, KT=keyboard tapping, aMT=active motor threshold, rMT=rest motor threshold, rT=finger-tapping, AI=Activity Index, PF=pinch force GP=grip force, HG=hand grip, PPT=Purdue Pegboard Test, TF=tapping frequency, NHPT=Nine Hole Peg Test, ARAT=Action Research Arm Test, PC=pinch acceleration, SRT=simple reaction time, FMA=Fugl-Meyer Assessment, AHA=Assisting Hand Assessment, MAUEF=Melbourne assessment of upper extremity function, TBS=theta burst stimulation, y=year, m=month, w=week, d=day

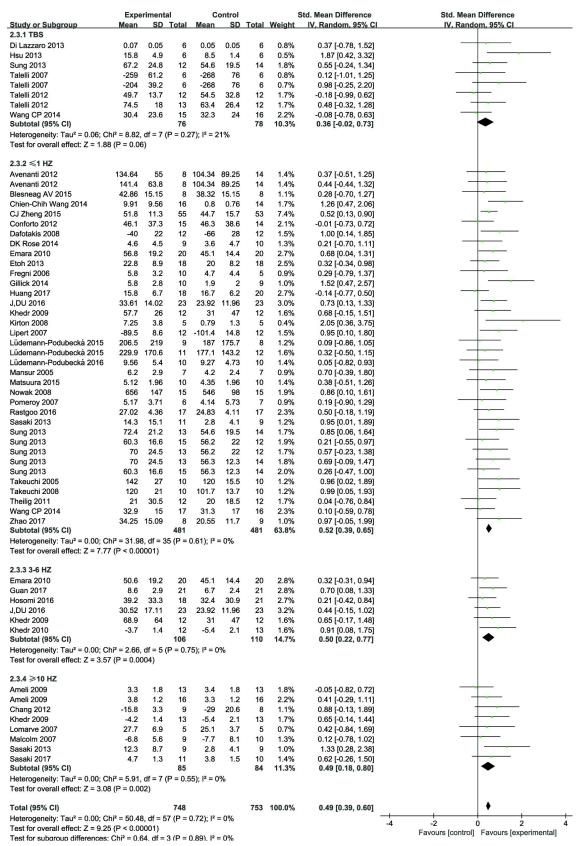
TABLE 2 PEDro scores of included articles

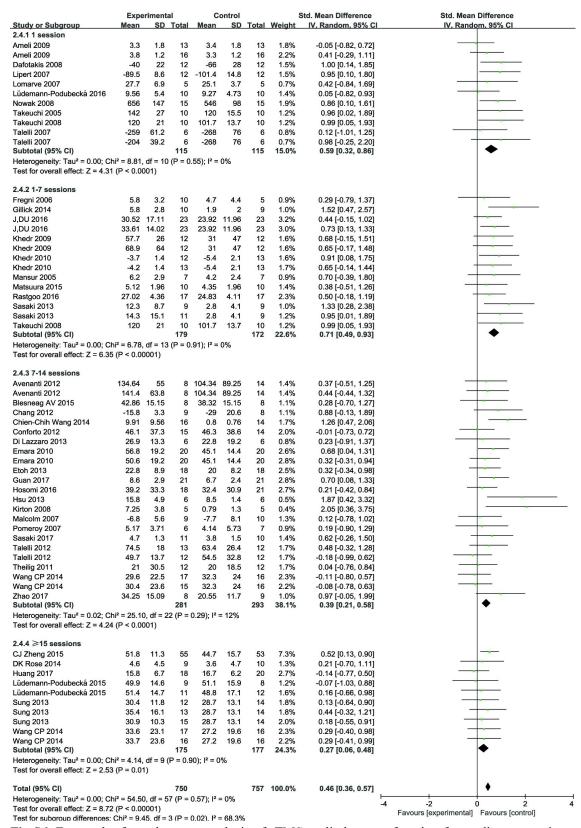

Study	1ª	2	3	4	5	6	7	8	9	10	11	total score(10)	Quality
J.Du2016	Y	1	1	1	1	0	1	1	1	1	1	9	High
Lüdemann-	Y	1	1	1	1	1	1	1	1	1	1	10	High
Podubecká2016													
Lüdemann-	Y	1	1	1	1	1	1	1	1	1	1	10	High
Podubecká2015													
WangCP2014	Y	1	1	1	1	1	1	1	1	1	1	10	High
CC Wang2014	Y	1	1	1	1	0	1	1	1	1	1	9	High
DKRose2014	Y	1	1	1	0	1	1	1	1	1	1	9	High
Sung2013	Y	1	1	1	1	1	1	1	1	1	1	10	High
Conforto2012	Y	1	1	1	1	1	1	1	1	1	1	10	High
Emara2010	Y	1	1	1	1	0	1	1	1	1	1	9	High
Khedr2010	Y	1	1	1	1	0	1	1	1	1	1	9	High
Khedr2009	Y	1	1	1	1	0	1	1	1	1	1	9	High
Pomeroy2007	Y	1	1	1	1	0	1	1	1	1	1	9	High
Fregni2006	Y	1	1	1	0	0	0	1	1	1	1	7	High
Guan2017	Y	1	1	1	1	1	1	1	1	1	1	10	High
Sasaki2013	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Talelli2012	Y	0	0	1	1	1	0	1	1	1	1	7	Moderate
Chang2012	Y	1	0	1	1	0	0	1	1	1	1	7	Moderate
Hsu2013	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Etoh2013	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
Gillick2014	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
DiLazzaro2013	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Ackerley2014	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
CJ Zheng2015	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Matsuura2015	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Blesneag 2015	Y	1	0	1	0	0	1	1	1	1	1	7	Moderate
Avenanti 2012	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
Lomarev2007	Y	1	0	0	0	0	0	0	1	1	1	4	Moderate
Mansur2005	Y	1	0	1	0	0	1	1	1	1	1	7	Moderate
Liepert2007	Y	0	0	1	1	0	1	1	1	1	1	7	Moderate
Malcolm2007	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
Takeuchi2005	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Takeuchi2008	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Talelli2007	Y	1	0	1	1	0	0	1	1	1	1	7	Moderate
Theilig2011	Y	1	0	1	1	0	1	1	1	1	1	8	Moderate
Nowak2008	Y	1	0	1	0	0	0	1	1	1	1	6	Moderate
Ameli2009	Y	1	0	1	1	0	0	1	1	1	1	7	Moderate
Dafotakis2008	Y	1	0	ī	ī	0	0	1	ī	1	1	7	Moderate
Kirton2008	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
	Y	1	0	1	1	1	1	1	1	1	1	9	Moderate
71 2017	37			4	4	2	12	2	2	4		^	** *
	Y Y	1 1	0	1 1	1 1	1	1 1	1 1	1 1	1	1 1	9 9	Moderate Moderate

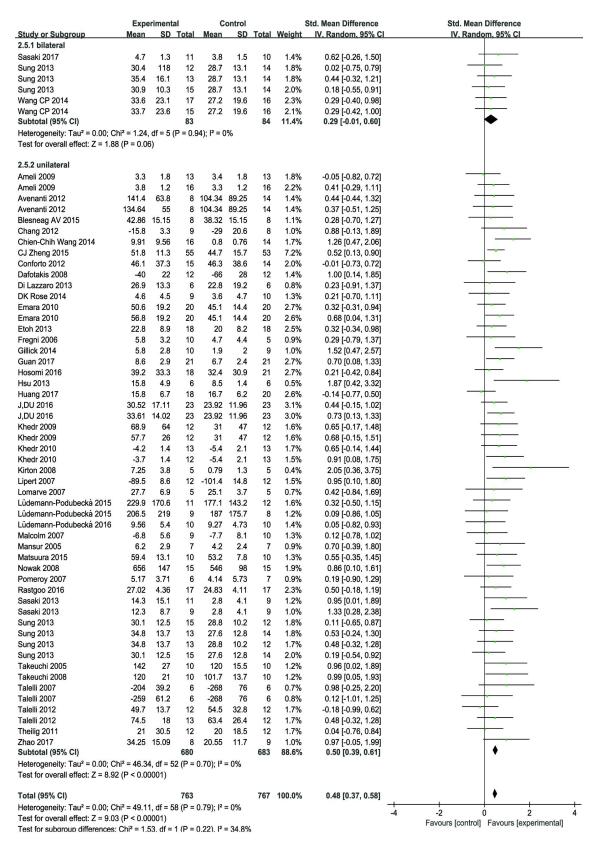
^aNot included in total score.

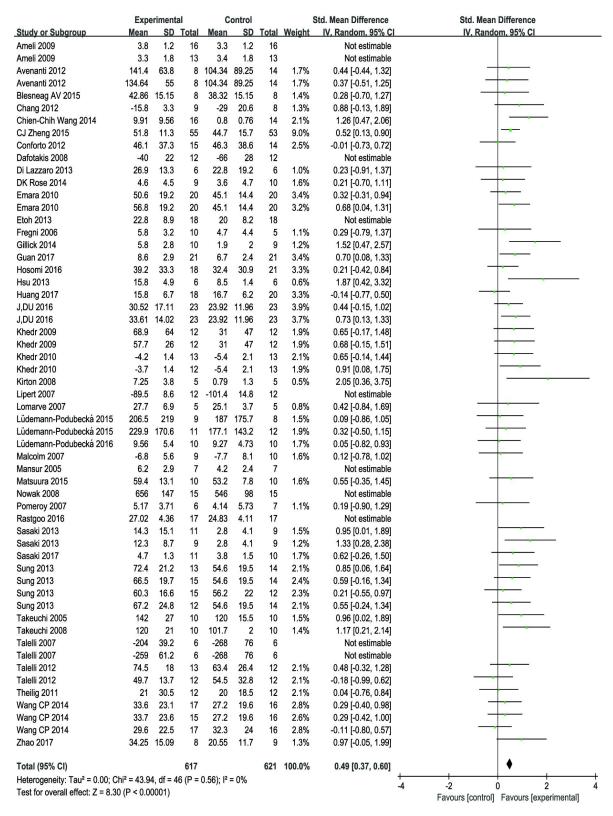

Y,yes;1,eligibility criteria;2,random allocation;3,concealed allocation; 4,similar groups at baseline; 5,blinding subjects; 6,blinding therapists; 7,blinding assessors; 8,outcome obtained in more than 85% of the subjects;9,intention-to-treat analysis;10,between-group statistical comparison;11, point estimates and measures of variability.

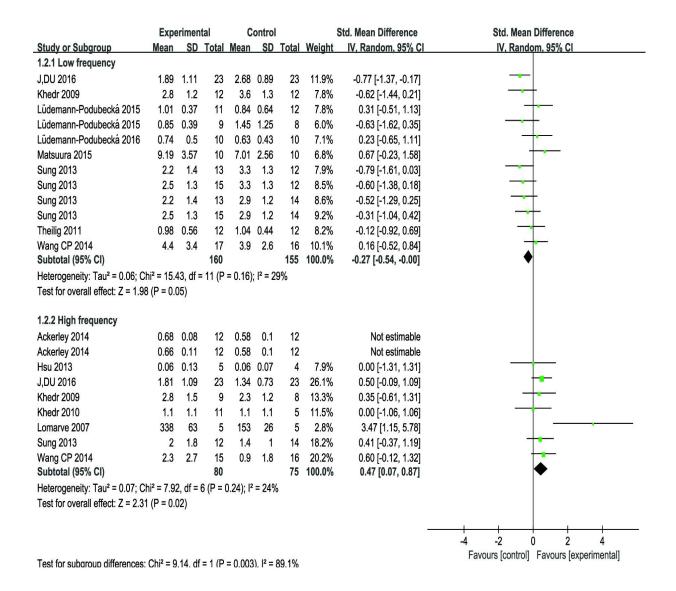

Fig S1. Forest plot from the meta-analysis of rTMS on motor evoked potentials showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

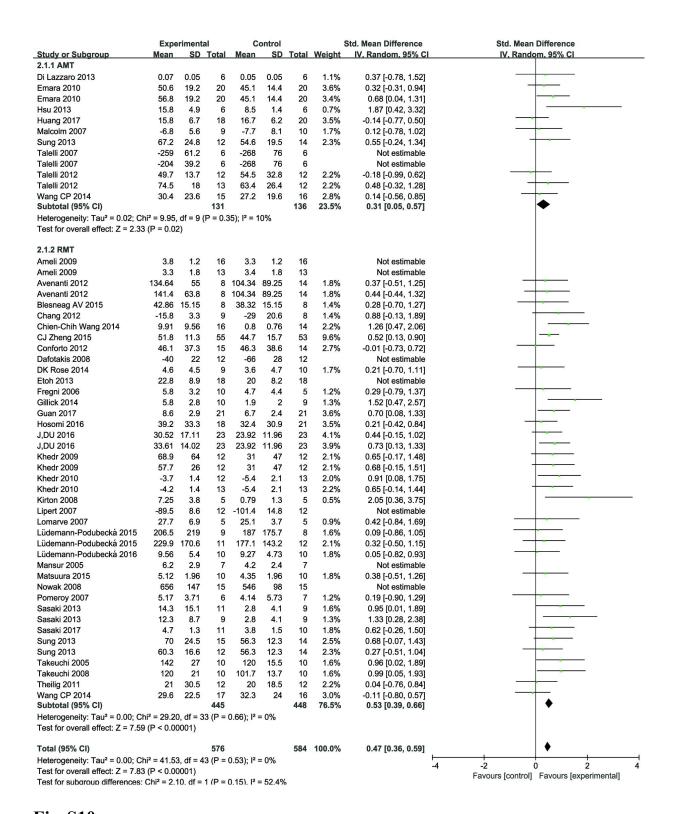

Fig S2. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different active motor threshold (AMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

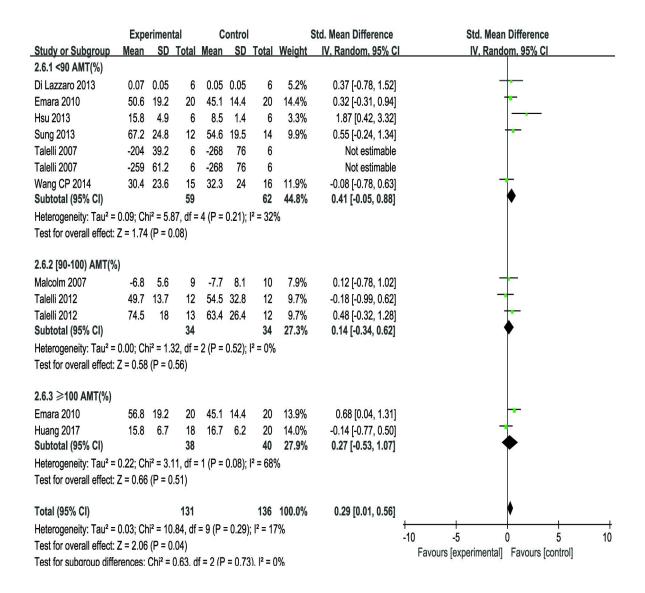

Fig S3. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different resting motor threshold (RMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

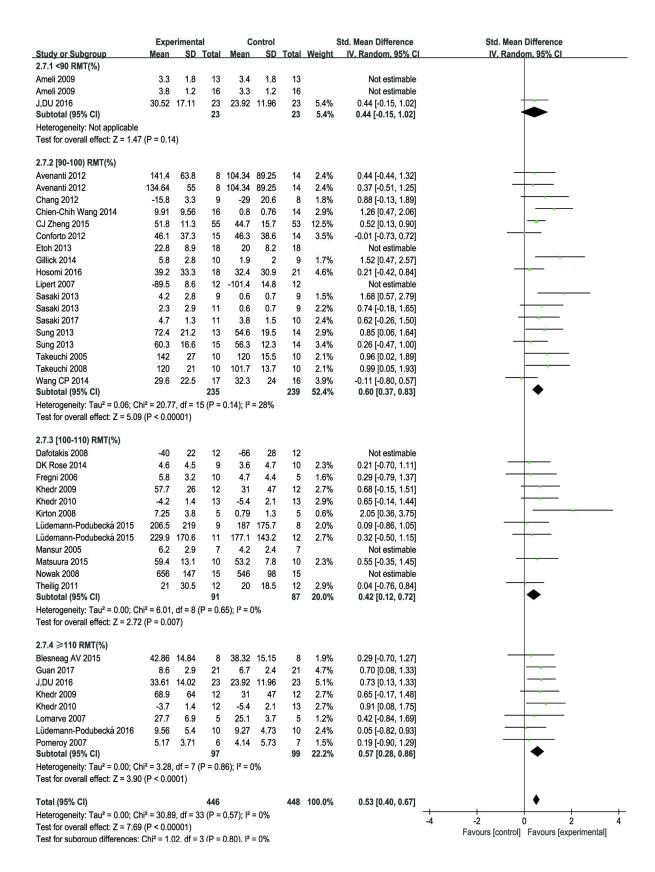

Fig S4. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation pulses rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

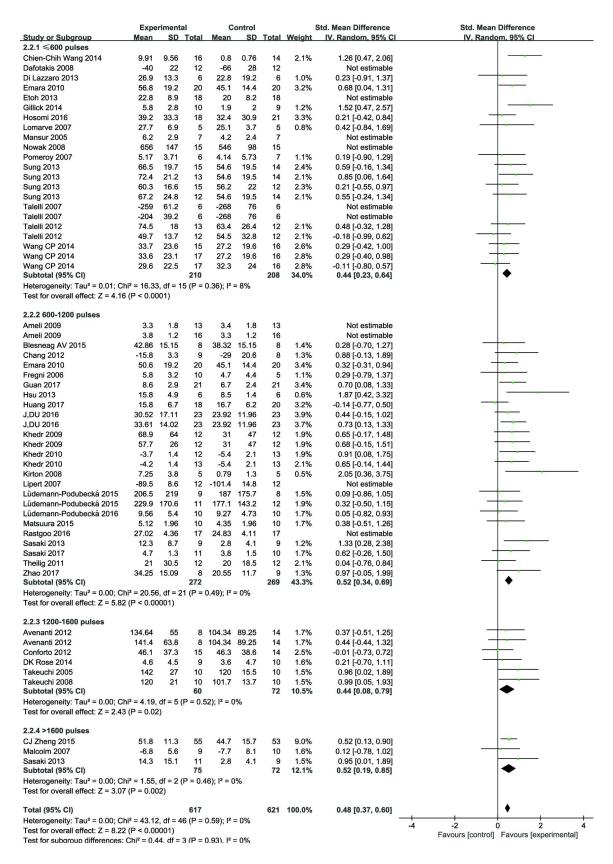

Fig S5. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation frequency rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

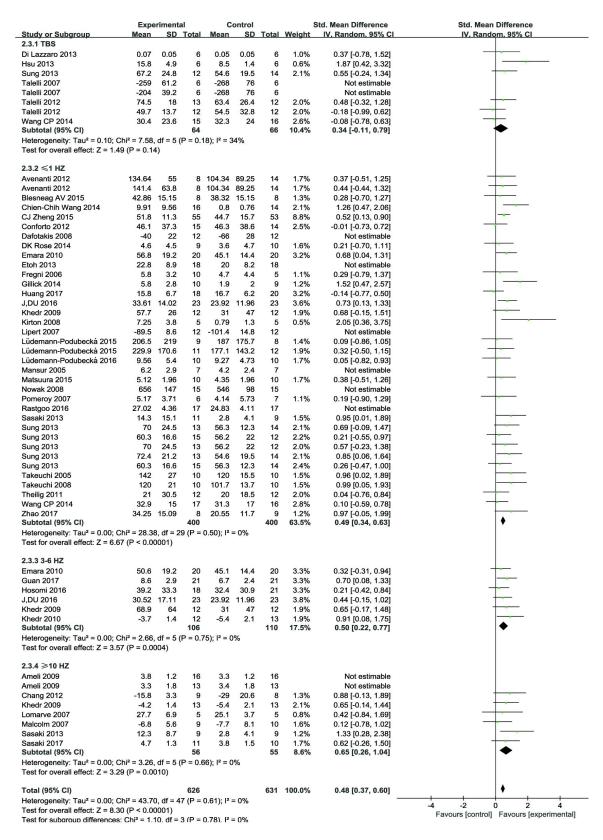

Fig S6. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sessions rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

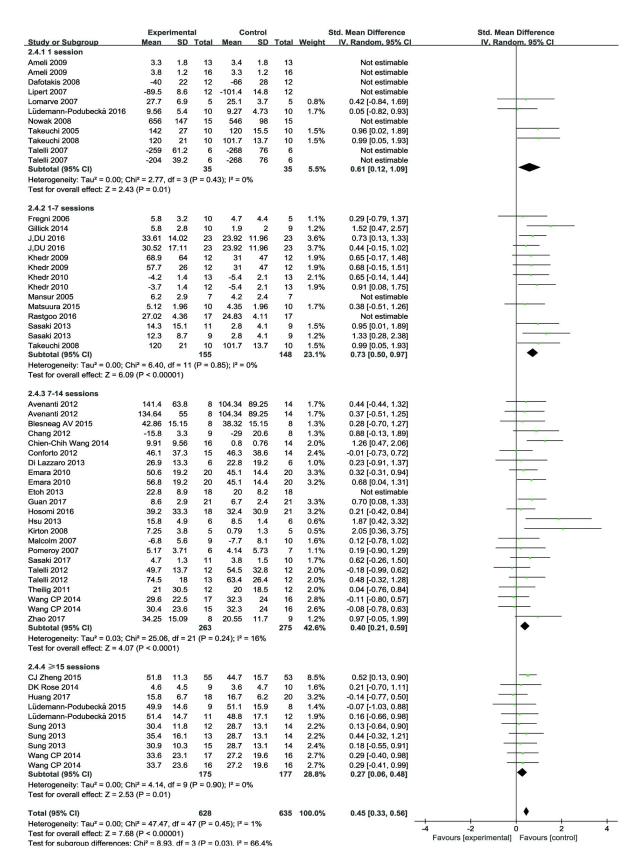

Fig S7. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sites rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals. Relative weight for each trial is indicated by the size of the corresponding square.

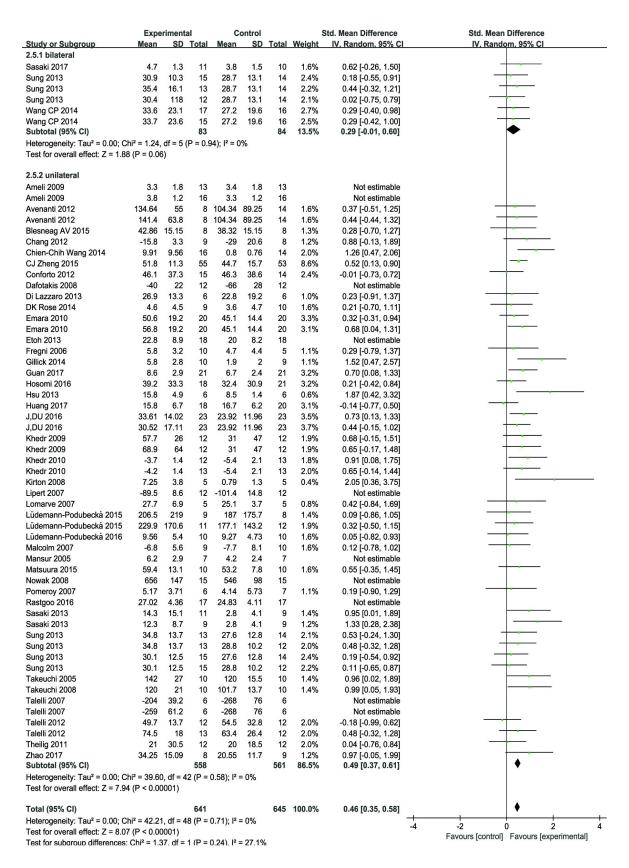

Fig S8. Forest plot from the meta-analysis of rTMS on limb motor function showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.

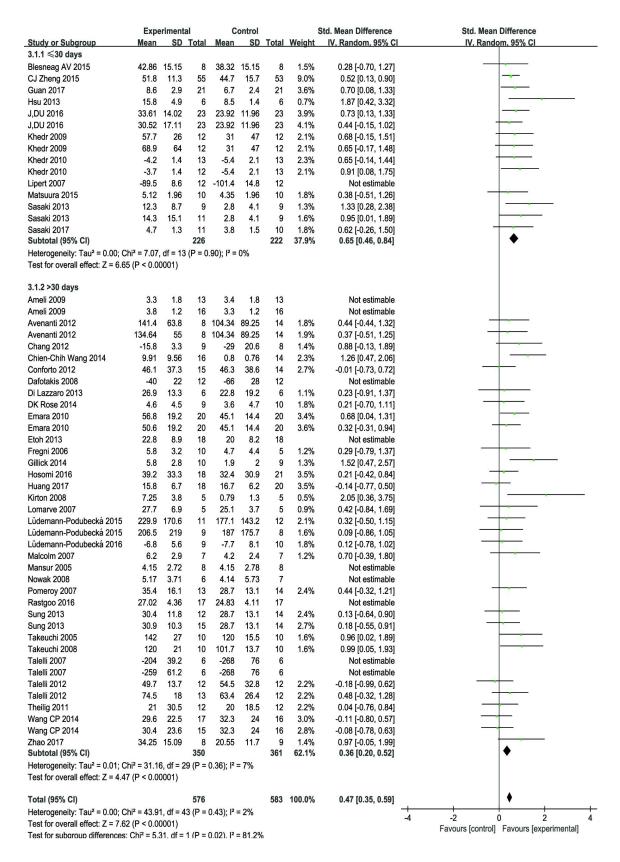

Fig S9. Forest plot from the meta-analysis of rTMS on motor evoked potentials showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over study.


Fig S10. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing active motor threshold and resting motor threshold rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.


Fig S11. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different active motor threshold (AMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.


Fig S12. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different resting motor threshold (RMT)rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.


Fig S13. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation pulses rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.


Fig S14. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation frequency rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.

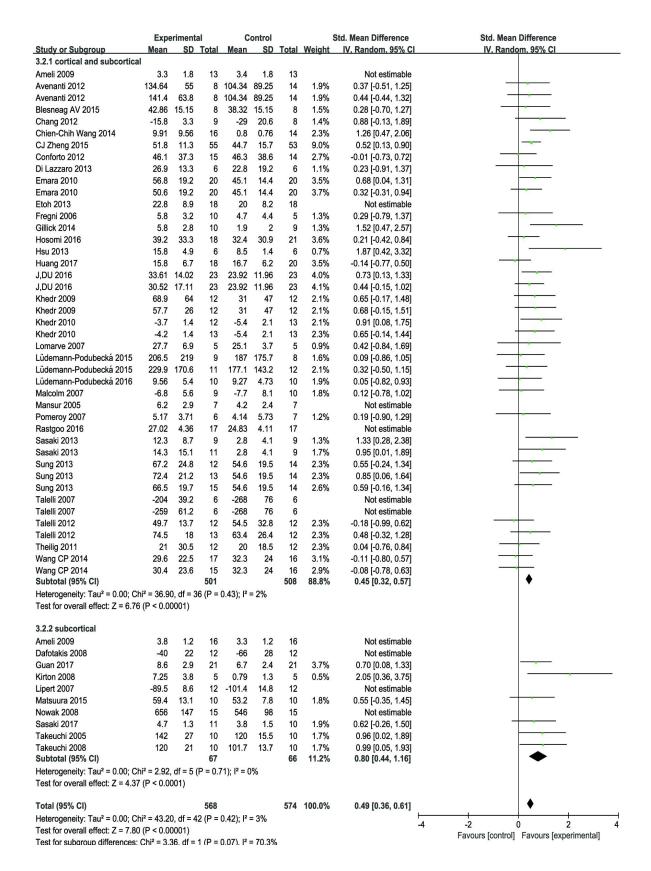

Fig S15. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sessions rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.

Fig S16. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing different stimulation sites rTMS protocol showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.

Fig S17. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing early stroke(within 30 days) and chronic stroke(>30 days) showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.

Fig S18. Forest plot from the meta-analysis of rTMS on limb motor function for studies comparing pure subcortical stroke and including cortical stroke showing estimates of effect size (SMD) with 95% confidence intervals after the removal of the cross-over studies.