
Supplement to ‘Merged block randomisation: a novel randomisation
procedure for small clinical trials’.

Additional simulation results
Abbreviations used in Figure legends: DA = deterministic allocation; PBR = permuted
block randomisation; MBR = merged block randomisation; BUD = block urn design;
MP = maximal procedure; BSD = big stick design; EBC = Efron’s biased coin design;
CR = complete randomisation; MTI = maximum tolerated imbalance.

Figure S1: Setting 1 (single centre study). Proportion of suballocations (allocations
created by stopping recruitment before the number n is reached) with an imbalance of
at least 2, averaged over N = 1000 simulation runs.

Proportion of suballocations with imbalance at least 2

n

0.0

0.2

0.4

0.6

0.8

20 40 60 80 100

DA
PBR(4)

MBR(2)
MP, MTI=2

BUD, MTI=2
BSD, MTI=2

EBC(2/3)
CR

1



Figure S2: Setting 1 (single centre study). Average correct guess probability of the final
allocation over N = 1000 simulation runs.

Correct guess probability

n

0.50

0.55

0.60

0.65

0.70

0.75

20 40 60 80 100

DA
PBR(4)

MBR(2)
MP, MTI=2

BUD, MTI=2
BSD, MTI=2

EBC(2/3)
CR

Figure S3: Setting 2 (multicentre study, 10 centres). Average imbalance of the final
allocation (combining the ten strata) over N = 1000 simulation runs.

Average imbalance of final allocation

lambda

2

4

6

8

10

12

14

15 20 25 30

DA
PBR(4)

MBR(2)
MP, MTI=2

BUD, MTI=2
BSD, MTI=2

EBC(2/3)
CR

2



Figure S4: Setting 2 (multicentre study, 10 centres). Average correct guess probability,
where the average is taken over the ten correct guess probabilities computed for each of
the strata; then averaged over the N = 1000 simulation runs.

Correct guess probability, averaged over the ten strata

lambda

0.50

0.55

0.60

0.65

0.70

0.75

15 20 25 30

DA
PBR(4)

MBR(2)
MP, MTI=2

BUD, MTI=2
BSD, MTI=2

EBC(2/3)
CR

3



Pseudo-code

Algorithm 1 Pseudo-code for merged block randomisation

Inputs:
n, the final sample size;
ratio, a vector with the desired allocation ratio, given in integers (e.g. [1 1] for 1:1
allocation).

Initialization
final ← empty vector of length n
counter2 ← 0

Create basis allocations
K ← sum of elements of ratio
basis1 ← PBR(K) of length n, with blocks with the treatment assignment in the given
ratio
basis2 ← PBR(K) of length n, with blocks with the treatment assignment in the given
ratio
use1or2 ← vector of n fair coin flips, stored as 1’s (heads) and 2’s (tails)

Merge
for i from 1 to n:
if use1or2[i] equals 1, then final[i] ← basis1[i - counter2]
else {counter2 ← (counter2 + 1) and final[i] ← basis2[counter2]}

4



R code

library(randomizeR)

BlockMergeGen <- function(n, ratio, labels){

#n = sample size of final allocation

#ratio = vector with desired allocation ratio, given in integers

length.blocks <- sum(ratio)

nr.basis.blocks <- ceiling(n/length.blocks)

basis1 <- as.numeric(getRandList(genSeq(pbrPar(rep(length.blocks,

ceiling(n/length.blocks)), K=length(ratio), ratio = ratio, groups = labels))))[1:n]

basis2 <- as.numeric(getRandList(genSeq(pbrPar(rep(length.blocks,

ceiling(n/length.blocks)), K=length(ratio), ratio = ratio, groups = labels))))[1:n]

#now merge

res <- rep(0, n)

row1or2 <- sample(c(1, 2), size = n, prob = c(1/2, 1/2), replace = T)

taken.from.2 <- 0

for(i in 1:n){

if(row1or2[i] == 1){res[i] <- basis1[i - taken.from.2]}

if(row1or2[i] == 2){

taken.from.2 <- (taken.from.2 + 1)

res[i] <- basis2[taken.from.2]

}

}

return(res)

}

5


