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A. LOGISTIC REGRESSION CURVES WITH VARYING INTERCEPTS OR SLOPES

In Section 2, we introduce a translation parameter, denoted by δAi , as a multiplicative factor due to
one underlying assumption generally made in contemporary translational sciences that the dose-
toxicity curves across species are more similar in terms of their shapes rather than locations [1].
Figure S1 displays a group of logistic regression curves, which suggest the shape is dominated
largely by the slope.
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Figure S1: A group of logistic regression curves C0-C4 to graphically illustrate how the slope and the intercept would modify the
shape, respectively. The solid curve C0 plotted in both panels is intended to serve as a benchmark for comparison.

B. THE HYPOTHETICAL DOG DATA USED IN THE PAPER

In Section 4, we suppose that prior to the phase I first-in-man trial, historical data are available
from three hypothetical preclinical toxicology studies in dogs. Figure S2 shows the binomial data
that we have used in Section 4, with the prior effective sample size described in Table S1.

Table S1: Summaries of marginal predictive priors derived from the dog data setting wR = 0.3. Also reported are the parameters of
the Beta(a, b) approximtes used for ESS calculation

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9
2 4 8 16 22 28 40 54 70

Prior means 0.057 0.085 0.135 0.223 0.282 0.338 0.431 0.509 0.573
Prior std dev. 0.118 0.133 0.153 0.176 0.186 0.195 0.212 0.222 0.226

ESS 3.0 3.4 4.0 4.6 4.9 4.8 4.4 4.1 3.8
a 0.2 0.3 0.5 1.0 1.4 1.6 1.9 2.1 2.2
b 2.8 3.1 3.5 3.6 3.5 3.2 2.5 2.0 1.6
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Figure S2: Preclinical data from three hypothetical studies in dogs. The height of the bar represents the number of dogs studied, and
the height of the dark grey segment counts the number experiencing an ocular toxicity. Doses listed in brown are the doses (mg/kg)
administered to dogs. Doses listed in black are the human-equivalent doses (mg/m2). Projections are made by scaling animal doses
using the prior median of δDog.

C. ADDITIONAL SIMULATION RESULTS

C.1 Numerical results of all evaluated scenarios

The performance of trials using BLRM-guided dose-escalation under Models A – D are compared
with that of the optimal non-parametric benchmark design [2]. The optimal design is defined
using the ‘complete’ toxicity profile of each patient, created by assuming there are Ji? clones of a
patient given doses spanning the dosing set Di? . A toxicity tolerance thereshold εn is generated
from U[0, 1] for the nth patient, which determines the corresponding toxicity outcome at the jth
dose as

Rjn = 1(εn ≤ pi? j), 1 ≤ n ≤ N, 1 ≤ j ≤ Ji? ,

where 1(·) is the indicator function. An unbiased estimate for pi? j is thus R̄j(N) = 1
N ∑N

n=1 Rjn
for a trial of which the maximum sample size is N. Consequently, the estimated MTD under the
benchmark design is

d̂opt
M = arg min

j=1,...,Ji?
|R̄j(N)− 0.25|.

Improvements beyond this bound are not possible unless strong parametric assumptions are made
about dose-response relationships. In our context, we wish to quantify the gains that can be made
over the benchmark designs, in part due to borrowing strength from the preclinical data.

Two variants of Model A – C are evaluated, either treating δDog as a random variable with a
log-normal prior distribution, or a fixed constant taking the median of the log-normal prior. Table
S2 provides a complete listing of all simulation results for analysis models defined in Section 5
and the optimal benchmark design.

C.2 Improved estimation precision

In our way of declaring a dose to be MTD, precision of the posterior estimate of the DLT risk is
decisive. We thus evaluate different analysis models by examining the bias, mean squared error
(MSE) and coverage probability (CP) of the central 95% credible interval of the posterior median
of the DLT risk at the true MTD. Figure S3 visualised the comparison in terms of these metrics. As
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illustrated, inference based on the analysis Models A-C reports smaller bias and MSE than Model
D, except the Scenarios 1 and 8.
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Figure S3: Comparison of the performance in terms of bias and mean squared error of the toxicity rate estimator at the true human
MTD, based on different analysis Models A – D. Solid plotting symbols correspond to analysis models with δDog defined as a random
variable. Transparent ones correspond to the counterparts defined with δDog as a fixed constant.

Figure S4 visualised the comparison in terms of the CP of central 95% credible interval at the
true MTD by applying analysis Models A-C to incorporate preclinical data versus Model D to
entirely discard them. We observe that at least 95% CP was attained for almost all simulation
scenarios except Scenario 1. The low convergence probability of analysis models A-C in Scenario
1 is explainable, as risk of toxicity at the dose 16 mg/m2 tends to be underestimated and thus
easier to be concluded as the MTD in humans after synthesising the dog data, which advise a
safer toxicity profile of the drug to humans. Across the scenarios considered here, Model A tends
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to attain lowest CP for scenarios when there is a discrepancy between the prediction of human
toxicity based on Bayesian meta-analysis of the dog data and the true MTD. This is because large
weight placed on preclinical data would lead to excessive shrinkage to the animal parameter,
although on the equivalent human dosing scale. In addition, a fixed constant of δDog in general
would produce an estimate of toxicity rate at the target dose with less accurate confidence interval.
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Figure S4: Comparison of the performance in terms of coverage probability of central 95% credible interval of the toxicity rate estimator
at the true human MTD, based on different analysis Models A – D. Solid plotting symbols correspond to analysis models with δDog
defined as a random variable. Transparent ones correspond to the counterparts defined with δDog as a fixed constant.

Another interesting comparison is investigated between two variants of Bayesian meta-analytic
Models A – C, by treating the translation factor δDog as a random variable or fixed constant. As
shown in both Figures S3 and S4, it is not surprising that meta-analytic models constrained with
fixed δDog would lead to increased precision in Scenarios 3 and 4 due to prior-data consistency.
In other simulation scenarios, however, those models experience problems because of ineffective
down-weighting of the dog data. This is especially true for Scenarios 6 and 8, when the prior
predictions mismatch the true human MTD and, meanwhile, incorporating preclinical data that
overestimate the human toxicity leads to more conservative dose escalations.

D. COMPARISONS WHEN ADDITIONAL EARLY STOPPING RULES ARE APPLIED

In Figure S5, we show operating characteristics based on 2000 simulated phase I clinical trials
under the same escalation rules, defined in Section 4.2, and the same basis of declaring a dose to
be MTD as defined in Section 5. The difference is that trials will be terminated earlier if criteria
(a)-(c), specified as follows, are satisfied:

(a) There have been at least 8 cohorts (24 patients) recruited

(b) The dose selected for the next cohort is the same as the current dose

(c) At least 6 patients have been treated with this dose
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Figure S5: Operating characteristics of BLRM-guided dose-escalation procedures basing inferences on Models A-D, when additional
early stopping rules may be applied.
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Table S2: Comparison of alternative analysis models in terms of the percentage of selecting a dose as MTD at the end of the trials,
percentage of early stopping for safety, average patient allocation, and average number of patients with toxicity.

Scenario Design δSk

% dose declared as MTD & average patient allocation
DLT N̄

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None2 4 8 16 22 28 40 54 70

1 pTox 0.08 0.16 0.25 0.35 0.41 0.45 0.52 0.58 0.63

Benchmark Sel 0.4 19.2 58.7 19.3 1.9 0.4 0.1 0 0

Model A Par Sel 0 4.3 64.6 27.6 3.3 0.2 0 0 0 0
Pts 0 4.4 22.9 13.7 3.6 0.4 0 0 0 12.9 45.0

Fix Sel 0 3.0 52.4 39.4 5.1 0.1 0 0 0 0
Pts 0 4.0 17.0 17.9 5.7 0.4 0 0 0 13.7 45.0

Model B Par Sel 0.4 10.2 52.4 22.4 4.4 0.2 0 0 0 10.0
Pts 0.6 6.2 18.9 11.4 3.1 0.6 0 0 0 11.3 40.8

Fix Sel 0.4 10.9 44.8 28.8 4.7 0.2 0 0 0 10.2
Pts 0.6 6.2 15.9 12.6 5.0 0.6 0 0 0 11.3 40.9

Model C Par Sel 0.4 12.4 50.0 18.6 3.6 0.3 0 0 0 14.7
Pts 0.3 7.3 18.0 10.0 2.8 0.6 0.1 0 0 10.6 39.1

Fix Sel 0.5 14.0 43.0 22.7 4.8 0.2 0 0 0 14.8
Pts 0.4 7.5 15.6 10.8 4.1 0.8 0 0 0 10.6 39.2

Model D Sel 0.6 26.0 47.3 7.5 1.9 0.4 0 0 0 16.3
Pts 1.7 12.5 17.6 4.6 1.1 0.8 0.1 0 0 9.0 38.4

2 pTox 0.01 0.04 0.11 0.25 0.35 0.44 0.55 0.65 0.73

Benchmark Sel 0 0 8.3 70.1 20.2 1.4 0 0 0

Model A Par Sel 0 0 9.0 60.4 28.1 2.5 0 0 0 0
Pts 0 3.0 6.7 20.6 12.5 2.2 0 0 0 11.3 45.0

Fix Sel 0 0 5.2 60.4 32.2 2.2 0 0 0 0
Pts 0 3.0 4.7 18.0 17.0 2.3 0 0 0 12.1 45.0

Model B Par Sel 0 0 14.5 56.9 26.2 2.0 0 0 0 0.4
Pts 0 3.1 8.6 19.9 10.8 2.4 0 0 0 10.9 44.8

Fix Sel 0 0 10.9 54.9 32.1 1.7 0 0 0 0.4
Pts 0 3.1 7.0 17.5 14.7 2.5 0 0 0 11.6 44.8

Model C Par Sel 0 0 20.9 53.1 23.2 2.2 0 0 0 0.6
Pts 0 3.2 10.3 18.6 9.8 2.6 0.2 0 0 10.0 44.7

Fix Sel 0 0 16.9 50.9 29.5 2.1 0 0 0 0.6
Pts 0 3.3 8.6 17.0 12.9 3.0 0 0 0 10.8 44.8

Model D Sel 0 0.4 42.2 40.3 13.9 2.2 0.3 0 0 0.7
Pts 0.4 4.0 17.3 14.6 5.0 3.0 0.3 0.1 0 9.1 44.7

3 pTox 0.03 0.05 0.10 0.16 0.25 0.32 0.40 0.48 0.55

Benchmark Sel 0 0 1.1 19.5 50.6 23.7 4.8 0.3 0

Model A Par Sel 0 0 1.0 19.7 55.6 22.9 0.8 0 0 0
Pts 0 3.0 4.1 11.2 18.2 8.3 0.1 0 0 10.0 45.0

Fix Sel 0 0 0.4 17.6 60.9 21.1 0 0 0 0
Pts 0 3.0 3.4 8.8 21.2 8.6 0 0 0 10.0 45.0

Model B Par Sel 0 0 1.5 20.3 51.4 24.9 1.0 0 0 0.8
Pts 0 3.0 4.6 11.6 15.8 9.2 0.4 0 0 9.9 44.6

Fix Sel 0 0 1.2 17.3 57.6 22.8 0.3 0 0 0.8
Pts 0 3.0 4.0 9.0 18.8 9.7 0.2 0 0 9.9 44.7

Model C Par Sel 0 0.1 1.4 22.7 45.8 26.0 3.4 0.1 0 0.8
Pts 0 3.2 4.5 9.6 17.1 9.9 0.4 0 0 9.7 44.7

Fix Sel 0 0.1 2.0 19.1 54.4 22.9 0.6 0 0 0.8
Pts 0 3.2 4.5 9.6 17.1 9.9 0.4 0 0 9.7 44.7

Model D Sel 0 0.2 13.4 25.1 32.9 22.4 3.3 0.9 0.4 1.4
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Table S2 – Continued.

Scenario Design δSk

% dose declared as MTD & average patient allocation
DLT N̄

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None2 4 8 16 22 28 40 54 70

Pts 0.4 3.9 9.8 10.8 8.6 8.2 1.9 0.5 0.3 8.8 44.4

4 pTox 0.001 0.005 0.03 0.10 0.16 0.25 0.38 0.50 0.60

Benchmark Sel 0 0 0 1.2 22.2 62.0 14.4 0.2 0 0

Model A Par Sel 0 0 0 1.5 27.4 65.6 5.5 0 0 0
Pts 0 3.0 3.1 4.5 13.1 20.4 0.9 0 0 8.1 45.0

Fix Sel 0 0 0 0.8 33.3 65.0 0.9 0 0 0
Pts 0 3.0 3.0 3.7 13.5 21.7 0.1 0 0 8.1 45.0

Model B Par Sel 0 0 0 1.9 29.1 64.3 4.3 0.4 0 0
Pts 0 3.0 3.1 5.0 12.0 20.3 1.5 0.1 0 8.2 45.0

Fix Sel 0 0 0 1.0 32.4 64.8 1.6 0.2 0 0
Pts 0 3.0 3.1 4.0 12.5 21.7 0.6 0 0.1 8.2 45.0

Model C Par Sel 0 0 0.2 2.8 28.1 63.8 4.9 0.2 0 0
Pts 0 3.0 3.3 5.3 11.7 18.8 2.5 0.3 0.1 8.3 45.0

Fix Sel 0 0 0.1 2.1 30.4 64.6 2.6 0.2 0 0
Pts 0 3.0 3.2 4.5 11.8 21.1 1.2 0.1 0.1 8.3 45.0

Model D Sel 0 0 1.4 7.2 32.3 50.6 7.6 0.8 0.1 0
Pts 0 3.1 4.3 7.0 9.7 16.0 3.8 0.7 0.4 8.5 45.0

5 pTox 0.01 0.02 0.05 0.08 0.11 0.14 0.25 0.37 0.47

Benchmark Sel 0 0 0 0.2 2.4 11.9 67.2 17.8 0.6 0

Model A Par Sel 0 0 0 0.3 4.5 48.4 44.8 2.0 0 0
Pts 0 3.0 3.1 4.1 7.7 20.9 6.1 0.2 0 5.9 45.0

Fix Sel 0 0 0 0.2 5.3 75.2 19.1 0.2 0 0
Pts 0 3.0 3.0 3.5 8.1 25.8 1.6 0 0 5.4 45.0

Model B Par Sel 0 0 0.2 0.4 4.6 51.0 38.1 4.4 1.1 0.2
Pts 0 3.0 3.3 4.2 5.7 19.9 7.2 1.2 0.4 6.4 44.9

Fix Sel 0 0 0 0.2 5.1 62.8 25.9 4.2 1.6 0.2
Pts 0 3.0 3.1 3.6 6.2 23.2 4.5 0.7 0.6 6.1 44.9

Model C Par Sel 0 0 0.2 0.5 4.5 50.3 36.4 6.5 1.4 0.2
Pts 0 3.0 3.3 4.2 5.2 18.3 8.4 1.8 0.6 6.7 44.8

Fix Sel 0 0 0 0.4 4.5 58.2 29.5 4.9 2.3 0.2
Pts 0 3.0 3.2 3.7 5.2 21.6 6.0 1.2 1.0 6.5 44.9

Model D Sel 0 0 0.7 1.1 6.9 39.6 34.8 13.2 3.5 0.3
Pts 0.2 3.3 4.4 4.7 3.5 13.5 9.6 3.4 2.4 7.7 45.0

6 pTox 0.003 0.006 0.01 0.02 0.05 0.08 0.15 0.25 0.37

Benchmark Sel 0 0 0 0 0 0.4 18.3 63.8 17.6

Model A Par Sel 0 0 0 0 0 7.5 59.9 30.8 1.8 0
Pts 0 3.0 3.0 3.1 4.1 15.9 13.2 2.6 0.1 4.2 45.0

Fix Sel 0 0 0 0 0 31.6 62.3 5.2 0.9 0
Pts 0 3.0 3.0 3.0 4.2 24.9 6.7 0.2 0 3.4 45.0

Model B Par Sel 0 0 0 0 0.2 10.3 44.5 34.1 10.9 0
Pts 0 3.0 3.0 3.1 1.7 13.6 11.8 6.0 2.8 5.4 45.0

Fix Sel 0 0 0 0 0.2 19.2 40.2 27.4 13.0 0
Pts 0 3.0 3.0 3.0 1.7 18.1 9.1 3.7 3.4 5.0 45.0

Model C Par Sel 0 0 0 0 0.2 10.7 38.2 38.3 12.7 0
Pts 0 3.0 3.0 3.1 1.6 10.3 12.4 7.8 3.9 6.0 45.0

Fix Sel 0 0 0 0 0.2 14.8 38.5 32.2 14.2 0
Pts 0 3.0 3.0 3.0 1.2 14.6 9.9 5.4 4.9 5.7 45.0
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Table S2 – Continued.

Scenario Design δSk

% dose declared as MTD & average patient allocation
DLT N̄

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None2 4 8 16 22 28 40 54 70

Model D Sel 0 0 0 0.2 1.8 8.3 30.4 41.2 18.1 0
Pts 0.1 3.1 3.1 3.3 1.0 7.3 10.9 8.5 7.7 7.1 45.0

7 pTox 0.25 0.42 0.60 0.75 0.82 0.88 0.91 0.94 0.97

Benchmark Sel 90.5 9.5 0 0 0 0 0 0 0

Model A Par Sel 42.3 27.5 0.1 0 0 0 0 0 0 30.2
Pts 10.7 18.9 8.5 0.4 0 0 0 0 0 16.0 38.5

Fix Sel 40.7 24.7 0.2 0 0 0 0 0 0 34.4
Pts 10.3 16.9 9.3 1.3 0 0 0 0 0 16.2 37.8

Model B Par Sel 10.8 3.8 0.1 0 0 0 0 0 0 85.4
Pts 4.1 6.5 3.4 0.4 0 0 0 0 0 6.1 14.4

Fix Sel 9.8 3.4 0 0 0 0 0 0 0 86.8
Pts 4.1 6.3 3.4 0.4 0 0 0 0 0 5.9 14.2

Model C Par Sel 6.6 2.6 0 0 0 0 0 0 0 90.8
Pts 2.1 5.8 2.8 0.4 0 0 0 0 0 4.9 11.1

Fix Sel 6.8 2.1 0 0 0 0 0 0 0 91.1
Pts 2.2 5.7 2.7 0.4 0 0 0 0 0 4.9 11.0

Model D Sel 8.6 2.8 0 0 0 0 0 0 0 88.6
Pts 4.3 6.3 1.2 0.1 0 0 0 0 0 4.5 11.9

8 pTox 0.001 0.005 0.01 0.02 0.04 0.05 0.10 0.16 0.25

Benchmark Sel 0 0 0 0 0 0 1.6 20.7 77.8

Model A Par Sel 0 0 0 0 0 2.0 41.2 47.9 8.8 0
Pts 0 3.0 3.0 3.1 3.8 13.1 14.2 4.5 0.3 3.1 45.0

Fix Sel 0 0 0 0 0 11.9 71.7 12.5 3.9 0
Pts 0 3.0 3.0 3.0 3.9 21.5 10.1 0.5 0 2.4 45.0

Model B Par Sel 0 0 0 0 0.1 4.9 20.5 32.1 42.4 0
Pts 0 3.0 3.0 3.0 1.2 14.1 8.0 4.3 8.4 4.7 45.0

Fix Sel 0 0 0 0 0.1 7.6 21.4 26.9 44.0 0
Pts 0 3.0 3.0 3.0 1.2 14.1 8.0 4.3 8.4 4.4 45.0

Model C Par Sel 0 0 0 0 0.1 4.6 15.0 31.5 48.8 0
Pts 0 3.0 3.0 3.1 1.1 7.4 9.2 8.0 10.2 5.3 45.0

Fix Sel 0 0 0 0 0.1 5.5 17.2 25.4 51.8 0
Pts 0 3.0 3.0 3.0 0.8 11.0 7.6 5.4 11.2 5.1 45.0

Model D Sel 0 0 0 0 0.6 3.5 9.0 28.2 58.7 0
Pts 0.1 3.0 3.1 3.2 0.5 5.2 6.9 6.7 16.3 6.2 45.0

pTox: true probability of toxicity in humans; Sel: proportion of times of declaring a dose as MTD; Pts: average number of patients

allocated to a dose; Par: one variant of the meta-analytic model treating δDog as a random variable; Fix: another variant of the meta-

analytic model treating δDog as a fixed constant, i.e., prior median of δDog in our implementation.
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