Toronto Alexithymia Scale - 20: Examining 18 Competing Factor Structure Solutions in a U.S. and the Philippines Sample

Supplemental Materials

Antover P. Tuliao ${ }^{\text {a }}$, Alicia K. Klanecky ${ }^{\text {b }}$, Bernice Vania N. Landoy ${ }^{\text {c }}$, and Dennis E. McChargue ${ }^{\text {d }}$
${ }^{a}$ Community, Family, and Addiction Sciences, Texas Tech University
${ }^{b}$ Department of Psychology, Creighton University
${ }^{\text {c }}$ University of the Philippines - Visayas
${ }^{\mathrm{d}}$ Department of Psychology, University of Nebraska - Lincoln

Table S1
Nested and Non-nested Pairwise Model Comparisons for the U.S. Sample

	1	2	3	4	5	6	7
A. Correlated Latent Factor Model							
1 ALEX							
2 DI/DDF-EOT	181.505(1)*						
3 DDF-DIF-EOT	429.274 (3)*	178.855(2)*					
4 DI/DDF-IM-PT	221.625 (3)*	2.49 (2)	-11.754*				
5 DDF-DIF-IM-PT	433.101 (6)*	136.124 (5)*	3.478 (3)*	203.345 (3)*			
B. Common Method Factor Model							
6 ALEX+CM	767.230 (5)*	8.646 *	0.126	8.340*	0.377		
7 DI/DDF-EOT+CM	19.557 *	412.987 (5)*	3.851 *	12.139 *	3.931 *	58.788 (1)*	
8 DDF-DIF-EOT+CM	23.390 *	18.140 *	379.208 (5)*	17.792 *	12.567 *	207.345 (3)*	153.496 (2)*
9 DI/DDF-IM-PT+CM	19.796 *	12.906 *	4.532 *	4648.353 (5)*	4.598*	159.762 (3)*	80.239 (2)*
10 DDF-DIF-IM-PT+CM	23.599 *	18.311*	13.183 *	18.021 *	2515.509 (5)*	367.619 (6)*	312.622 (5)*
C. Bifactor Model							
11 DI/DDF-EOT+BF	1152.331 (20)*	20.043 *	13.420 *	20.073 *	13.453 *	10.906 *	6.006 *
12 DDF-DIF-EOT+BF	927.763 (20)*	20.955 *	16.410 *	20.999*	16.379 *	11.655 *	6.812 *
13 DI/DDF-IM-PT+BF	1084.514 (20)*	13.976 *	7.992 *	14.393*	8.375 *	5.866*	2.201*
14 DDF-DIF-IM-PT+BF	937.253 (20)*	14.905*	9.949 *	15.333*	10.420 *	6.626 *	2.925 *
D. Bifactor + Common Methods Factor Model							
15 DI/DDF-EOT+BF+CM	1580.320 (25)*	23.728 *	18.139*	23.336*	17.852 *	770.599 (20)*	19.848 *
16 DDF-DIF-EOT+BF+CM	1532.426 (25)*	23.895*	19.124 *	23.526 *	18.802*	743.063 (20)*	20.142 *
17 DI/DDF-IM-PT+BF+CM	1567.636 (25)*	23.474 *	17.908 *	23.208 *	17.711 *	755.127 (20)*	17.711*
18 DDF-DIF-IM-PT+BF+CM	1543.497 (25)*	23.576 *	18.863 *	23.339 *	18.649 *	743.126 (20)*	18.002*

Table S1. Continued.

	8	9	10	11	12	13	14	15	16	17
A. Correlated Latent Factor Model										
1 ALEX										
2 DI/DDF-EOT										
3 DDF-DIF-EOT										
4 DI/DDF-IM-PT										
5 DDF-DIF-IM-PT										
B. Common Method Factor Model										
6 ALEX+CM										
7 DI/DDF-EOT+CM										
8 DDF-DIF-EOT+CM										
9 DI/DDF-IM-PT+CM	-9.900*									
$\begin{aligned} & 10 \begin{array}{l} \text { DDF-DIF-IM- } \\ \text { PT+CM } \end{array} \end{aligned}$	$\begin{gathered} 95.198 \\ (3)^{*} \end{gathered}$	$\begin{gathered} 205.770 \\ (3)^{*} \\ \hline \end{gathered}$								
C. Bifactor Model										
11 DI/DDF-EOT+BF	-0.674	5.071 *	-1.637							
12 DDF-DIF-EOT+BF	0.265	5.862 *	-0.794	2.196*						
13 DI/DDF-IM-PT+BF	-3.740 *	1.455	-4.539 *	-8.841*	-7.789*					
14 DDF-DIF-IM-PT+BF	-3.164*	2.169 *	-4.017 *	-4.857 *	-8.942*	2.196*				
D. Bifactor + Common Methods Factor Model										
$15 \begin{aligned} & \text { DI/DDF- } \\ & \text { EOT+BF+CM } \end{aligned}$	12.976*	19.174*	11.922 *	$\begin{gathered} 478.484 \\ (5)^{*} \end{gathered}$	11.061 *	14.446*	12.512 *			
$16 \begin{aligned} & \text { DDF-DIF- } \\ & \text { EOT+BF+CM } \end{aligned}$	15.119*	19.337*	13.749 *	12.857 *	$\begin{gathered} 1308.484 \\ (5)^{*} \end{gathered}$	13.743*	13.645*	0.379		
17 DI/DDF-IM- $\mathrm{PT}+\mathrm{BF}+\mathrm{CM}$	11.098*	17.629*	10.588 *	13.936 *	10.658 *	$\begin{gathered} 509.713 \\ (5)^{*} \end{gathered}$	12.511*	-2.153 *	-1.481	
$\begin{array}{ll} 18 & \begin{array}{l} \text { DDF-DIF-IM- } \\ \mathrm{PT}+\mathrm{BF}+\mathrm{CM} \end{array} \\ \hline \end{array}$	12.675*	17.898*	12.261 *	12.714*	12.490 *	13.972*	$\begin{gathered} 1957.304 \\ (5)^{*} \\ \hline \end{gathered}$	-0.782	-1.898	0.519

* $p<.05$.

Note: Figures in orange $=$ non-nested model pairwise comparisons using Vuong (1989) z-test. A significant Vuong test ($p<.05$) indicates that the model with a smaller BIC is better compared to the model with a larger BIC. Figures in blue $=$ nested model comparisons using $-2 \Delta L L_{\text {corrected }}$ $(\Delta d f)$.

Table S2
Nested and Non-nested Pairwise Model Comparisons for the Philippines Sample

	1	2	3	4	5	6	7	8
A. Correlated Latent Factor Model								
1 ALEX								
2 DI/DDF-EOT	11.204 (1)*							
3 DDF-DIF-EOT	31.667 (3)*	17.245 (2)*						
4 DI/DDF-IM-PT	21.716 (3)*	6.115 (2)*	0.017					
5 DDF-DIF-IM-PT	43.027 (4)*	21.325 (5)*	8.693 (3)*	20.615 (3) *				
B. Common Method Factor Model								
6 ALEX+CM	159.932 (5)*	5.795 *	5.140 *	5.083 *	4.740 *			
7 DI/DDF-EOT+CM	8.056 *	339.03 (5)*	6.496 *	6.501 *	6.128 *	15.54 (1)*		
8 DDF-DIF-EOT+CM	8.180 *	7.190 *	253.85 (5)*	6.657 *	6.489 *	29.30 (3)*	8.86 (2)*	
9 DI/DDF-IM-PT+CM	7.978 *	7.175 *	6.538 *	4126.68 (5)*	6.158*	24.80 (3)*	6.31 (2)*	
10 DDF-DIF-IM-PT+CM	8.304 *	7.400 *	7.060 *	6.904 *	N/A	55.18 (6)*	32.33 (5)*	24.73 (3)*
C. Bifactor Model								
11 DI/DDF-EOT+BF	195.06 (20)*	4.660*	4.128*	3.935 *	3.736 *	-0.555	-3.612 *	-3.611*
12 DDF-DIF-EOT+BF	162.10 (20)*	2.907*	2.445 *	2.630 *	2.466 *	-4.349*	-5.982*	-6.343 *
D. Bifactor + Common Method Factor Model								
13 DI/DDF-EOT+ BF+CM	232.13 (25)*	5.138 *	4.626*	4.764 *	4.506 *	86.95 (20)*	-1.567	-1.624
14 DDF-DIF-EOT+BF+CM	237.04 (25)*	5.147 *	4.775 *	4.678 *	4.524 *	85.89 (20)*	-2.760 *	-3.100 *
15 DDF-DIF-IM-PT+BF+CM	202.17 (25)*	3.656*	3.293 *	3.368 *	3.237 *	56.54 (20)*	-5.094 *	-5.480 *

Table Continues.

Table S2. Continued.

	9	10	11	12	13	14
A. Correlated Latent Factor Model						
1 ALEX						
2 DI/DDF-EOT						
3 DDF-DIF-EOT						
4 DI/DDF-IM-PT						
5 DDF-DIF-IM-PT						
B. Common Method Factor Model						
6 ALEX+CM						
7 DI/DDF-EOT+CM						
8 DDF-DIF-EOT+CM						
9 DI/DDF-IM-PT+CM						
10 DDF-DIF-IM-PT+CM	35.09 (3)*					
C. Bifactor Model						
11 DI/DDF-EOT+BF	-3.553 *	-4.091*				
12 DDF-DIF-EOT+BF	-5.914 *	-6.568*	-3.089 *			
	D. Bifac	Common	hod Factor			
13 DI/DDF-EOT+ BF+CM	-1.568	-2.231*	36.95 (5)*	4.252 *		
14 DDF-DIF-EOT+BF+CM	-2.966 *	-4.007*	1.073	78.20 (5)*	-0.578	
15 DDF-DIF-IM-PT+BF+CM	-4.869 *	-5.704*	-1.342	2.695 *	-3.139 *	-3.444 *

Note: Figures in orange $=$ non-nested model pairwise comparisons using Vuong (1989) z-test. A significant Vuong test ($p<.05$) indicates that the model with a smaller BIC is better compared to the model with a larger BIC. Figures in blue $=$ nested model comparisons using $-2 \Delta L L_{\text {corrected }}$ ($\Delta d f$). The DI/DDF-IM-PT+BF, DDF-DIF-IM-PT+BF, and DI/DDF-IM-PT+BF+CM models were not included because the models resulted in a lack of convergence. $\mathrm{N} / \mathrm{A}=-2 \Delta L L_{\text {corrected }}$ resulted in a negative statistic, which is non-interpretable.

Table S3
Standardized Parameter Estimates for the Correlated Latent Factor Models - U.S. Sample

	ALEX Model	$\begin{aligned} & \text { DI/DDF-EOT } \\ & \text { Model } \end{aligned}$		DIF-DDF-EOT Model			DI/DDF-PT-IM Model			DIF-DDF-PT-IM Model			
Item	ALEX	DI/DDF	EOT	DDF	DIF	EOT	DI/DDF	IM	PT	DDF	DIF	IM	PT
02	. $738{ }^{*}$. 741 *		.809*			.741*			.809*			
04	.524*	. 527 *		.614*			. 527 *			.614*			
11	.655*	.653*		.685*			. 653 *			.685*			
12	.563*	. 560 *		. 627 *			. 560 *			. 627 *			
17	.493*	. 486 *		.548*			. 486 *			.549*			
01	.774*	.777*			.765*		. $777{ }^{*}$.765*		
03	.565*	.564*			. 592 *		. $564 *$.592*		
06	.706*	.705*			.712*		.705*				.712*		
07	.665*	. 663 *			.696*		.663*				. 696 *		
09	.782*	.784*			.785*		.784*				.786*		
13	.791*	.793*			.812*		.793*				.812*		
14	.679*	.678*			.699*		.678*				.699*		
05	- . 002		.428*			. $428{ }^{*}$. $535 *$.533*
08	.206*		.184*			.184*			. $259 *$. 261 *
10	.116*		.672*			.673*		.672*				.673*	
15	.155*		. 072			. 074		. 071				. 074	
16	.100*		. 002			. 003		. 000				. 002	
18	.075*		. 582 *			.581*		. 582 *				.581*	
19	.091*		. 762 *			.761*		.765*				.765*	
20	.246*		. 064			. 064			. 116				. 117
m	47.325	27.828	19.528	12.985	14.863	19.528	27.828	12.237	7.295	12.985	14.863	12.237	7.295
sd	10.580	8.975	3.808	4.215	5.561	3.808	8.975	2.748	1.913	4.215	5.561	2.748	1.913
α	. 851	. 902	. 551	. 791	. 886	. 551	. 902	. 497	. 284	. 791	. 886	. 497	. 284
ω	. 856	. 903	. 539	. 791	. 888	. 518	. 903	. 518	. 233	. 792	. 888	. 519	. 330

Latent Factor Correlations												
1	1		1			1			1			
2	. $131 *$	1	. $835{ }^{*}$	1		. $126{ }^{*}$	1		.835*	1		
3			. $147 *$. 120 *	1	. 151	.759*	1	.145*	. $114{ }^{*}$	1	
4									. 141	. 151	. 760 *	1

* $p<.05$.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking.

Table S4
Standardized Parameter Estimates for the Correlated Latent Factor Models - Philippines Sample

Item	ALEX Model	DI/DDF-EOT Model		DIF-DDF-EOT Model			DI/DDF-PT-IM Model			DIF-DDF-PT-IM Model			
	ALEX	DI/DDF	EOT	DDF	DIF	EOT	DI/DDF	IM	PT	DDF	DIF	IM	PT
02	.738*	.740*		.763*			.738*			.764*			
04	. $514 *$. $527 *$. $564 *$. $520 *$.559*			
11	.686*	.685*		.706*			.686*			.706*			
12	.542*	. $538 *$.549*			.540*			. $550{ }^{*}$			
17	.480*	. $478{ }^{*}$. $490{ }^{*}$. $477{ }^{*}$. $492{ }^{*}$			
01	. 775 *	.780*			.784*		.778*				.781*		
03	. 482 *	. $479 *$.486*		. $484 *$.491*		
06	.603*	.598*			.601*		.601*				. $604 *$		
07	.558*	.554*			. 565^{*}		.557*				.567*		
09	. 745 *	.746*			.754*		.746*				.754*		
13	.781*	. 783 *			.788*		. 783 *				.785*		
14	.628*	. $624 *$.627*		.627*				.630*		
05	. 031		. $444 *$. 452^{*}			. 109				. 076
08	. 311 *		. 110			. 101			. $465{ }^{*}$. $467{ }^{*}$
10	-. 077		. $431{ }^{*}$.429*		. $398{ }^{*}$. $411{ }^{*}$	
15	. 072		-. 044			-. 035		-. 011				. 001	
16	. $154 *$. 027			. 033		. 031				. 037	
18	-. 111		. $482{ }^{*}$. $493{ }^{*}$. $434 *$. $457 *$	
19	. 038		. $734 *$.720*		.816*				.778*	
20	. 323 *		-. 115			-. 121			. $416{ }^{*}$.430*
m	56.321	35.995	20.356	15.637	20.397	20.356	35.995	12.705	7.649	15.637	20.397	12.705	7.649
$s d$	9.743	8.373	3.328	3.686	5.264	3.328	8.373	2.366	1.780	3.686	5.264	2.366	1.780
α	. 833	. 888	. 450	. 750	. 848	. 450	. 888	. 360	. 225	. 750	. 848	. 360	. 225
ω	. 838	. 888	. 337	. 749	. 847	. 338	. 888	. 379	. 293	. 749	. 848	. 384	. 290

Latent Factor Correlations	11		1			1					
1	.011	1	$.935^{*}$	1		.004	1		$.935^{*}$	1	
2			.058	-.054	1	$.687^{*}$.144	1	.056	-.039	1
3									$.599^{*}$	$.709^{*}$.096
4											

" $p<.05$.
Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking.

Table S5
Standardized Parameter Estimates for the Common Method Factor Models - U.S. Sample

* $p<.05$.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; CM = Common Method Factor - latent factor for negatively worded items.

Table S6
Standardized Parameter Estimates for the Common Method Factor Models - Philippines Sample

* $p<.05$.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; CM = Common Method Factor - latent factor for negatively worded items.

Table S7
Standardized Parameter Estimates for the Bifactor Models - U.S. Sample

	DI/DDF-EOT+BF Model			DIF-DDF-EOT+BF Model				DI/DDF-PT-IM+BF Model				DIF-DDF-PT-IM+BF Model				
Item	DI/DDF	EOT	BF	DDF	DIF	EOT	BF	DI/DDF	IM	PT	BF	DDF	DIF	IM	PT	BF
02	. $507 *$.693*	. 242			.776*	.499*			.698*	. 230				.779*
04	. 416 *		. $468{ }^{*}$. 320			. 524 *	. 410 *			. $474{ }^{*}$. 301				. 529 *
11	. 229 *		. 619 *	. 202 *			. $645 *$. 223 *			. 621^{*}	. 205^{*}				.644*
12	.248*		. 527 *	. $408 *$. 525 *	.243*			. 529 *	.419*				. 524 *
17	. 221 *		.459*	. 395 *			. 452 *	.217*			. 461 *	. 402 *				. 452 *
01	.292*		. 741^{*}		. 042		. 816 *	.284*			. $745{ }^{*}$. 045			.817*
03	-.278*		. 640^{*}		. 587 *		.433*	-. 286 *			.638*		. 588 *			. $431{ }^{*}$
06	. 051		. $704 *$. 223 *		.678*	. 044			.705*		. 227 *			.676*
07	-. 330 *		. 756 *		. $684 *$. 525 *	-.339*			.753*		.687*			. 522 *
09	. 131		. 764 *		. $170 *$.773*	. 123			. 765^{*}		. 174 *			.771*
13	-. 025		.800*		. 327 *		. 725 *	-. 033			.800**		. 331 *			.723*
14	-. 076		. 693 *		. 308 *		.613*	-. 083			.692*		. 312 *			.611*
05		. 436 *	-. 012			. $435{ }^{*}$	-. 027			. 141	-. 008				. 150	-. 023
08		.148*	.207*			.159*	.195*			. 939	.205*				. 895	.191*
10		.662*	.105*			.666*	.079*		.650*		.107*			.655*		.083*
15		. 042	. 141 *			. 050	.148*		. 041		.141*			. 048		. $147{ }^{*}$
16		-. 022	.096*			-. 015	.099*		-. 038		.095*			-. 032		.098*
18		.579*	.077*			.583*	. 028		. 583 *		.078*			.588*		. 030
19		.760*	.083*			.763*	. 050		. 769^{*}		.084*			.771*		. 053
20		. 019	.246*			. 032	.239*			. 155	. $244 *$. 168	.235*
ECV	. 125	. 154	. 721	. 079	. 115	. 274	. 656	. 112	. 121	. 101	. 665	. 073	. 109	. 119	. 091	. 608
ω	. 915	. 528	. 881	. 802	. 903	. 529	. 882	. 915	. 515	. 477	. 887	. 802	. 903	. 515	. 454	. 886
$\omega_{\mathrm{H}} / \omega_{\mathrm{HS}}$. 036	. 461	. 801	. 182	. 174	. 479	. 743	. 032	. 481	. 423	. 817	. 180	. 178	. 493	. 409	. 755

* $p<.05$.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying
Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; ECV
= Explained Common Variance.

Table S8
Standardized Parameter Estimates for the Bifactor Models - Philippines Sample

	DI/DDF-EOT+BF Model			DIF-DDF-EOT+BF Model				DI/DDF-PT-IM+BF Model ${ }^{\text {a }}$				DIF-DDF-PT-IM+BF Model ${ }^{\text {a }}$				
Item	DI/DDF	EOT	BF	DDF	DIF	EOT	BF	DI/DDF	IM	PT	ALEX	DDF	DIF	IM	PT	ALEX
02	.701*		.272*	. 233			.741*									
04	. 687^{*}		-. 147^{*}	. 524			. 491 *									
11	.608*		. 315 *	. 064			.687*									
12	. $427 *$. 353 *	. 003			.539*									
17	. $404 *$.266*	. 066			.482*									
01	. 720 *		. 302 *		. 054		.774*									
03	. $378{ }^{*}$. 307 *		. $471{ }^{*}$. 432 *									
06	.472*		. 400^{*}		-. 027		.616*									
07	. 425^{*}		. $379 *$. $427 *$.516*									
09	.652*		. 363 *		. 035		.749*									
13	.687*		. 361 *		. $244 *$.759*									
14	. $520 *$. 348 *		. 108		. 621^{*}									
05		. 396 *	-. 266			. $440 *$. 022									
08		. 351 *	. 456 *			. 124	. 316 *									
10		. 376 *	-. 212			. 425 *	-. 090									
15		. 112	. 314 *			-. 040	. 084									
16		. 182	.293*			. 033	.162*									
18		. 389 *	-. 303 *			.478*	-. 119									
19		.682*	-. 236			.748*	. 037									
20		. 085	. 485 *			-. 107	. 329 *									
ECV	. 581	. 113	. 306	. 043	. 066	. 268	. 769									
ω	. 892	. 522	. 852	. 757	. 859	. 396	. 859									
$\omega_{\mathrm{H}} / \omega_{\mathrm{HS}}$. 694	. 479	. 226	. 058	. 064	. 334	. 796									

* $p<.05$.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying
Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; ECV
$=$ Explained Common Variance. ${ }^{\text {a }}=$ No Convergence, number of iterations exceeded.

Table S9
Standardized Parameter Estimates for the Common Methods + Bifactor Models - U.S. Sample

	DI/DDF-EOT+CM+BF Model				DIF-DDF-EOT+CM+BF Model					DI/DDF-PT-IM+CM+BF Model ${ }^{\text {a }}$				
Item	DI/DDF	EOT	BF	CM	DDF	DIF	EOT	BF	CM	DI/DDF	IM	PT	BF	CM
02	. 663^{*}		.567*		.372*			.767*		.656*			.576*	
04	. 546 *		. $355 *$.413*	.499*			.497*	.402*	.542*			.361*	.408*
11	. 343 *		. $559 *$. 102			.661*		.334*			.565*	
12	. $342{ }^{*}$.464*		.199*			.551*		.334*			.470*	
17	. $299{ }^{*}$. $402 *$.202*			.475*		.290*			.409*	
01	. 436 *		.665*			. 047		.803*		.428*			.671*	
03	-. 124		.679*			.583*		.439*		-. 131			.676*	
06	. 195		.679*			.213*		.682*		. 185			.682*	
07	-. 145		.799*			.681*		.533*		-. 155			.796*	
09	. 289 *		. 720 *			.159*		.775*		.278*			.724*	
13	. 136		.792*			.313*		.732*		. 126			.793*	
14	. 056		.700*			.293*		.621*		. 046			.701*	
05		. 071	- . 009	.475*			.085*	-. 041	.473*			. 135	-. 012	.472*
08		.294*	.212*				.303*	.196*				.789*	.214*	
10		.092*	.107*	.686*			.111*	.070*	.689*		. 030		.107*	.690*
15		.525*	.122*				.519*	.151*			1.80		.130*	
16		.581*	.087*				.570*	.095*			. 181		.095*	
18		. 014	.099*	.573*			. 044	. 025	.577*		-. 001		.097*	.572*
19		.113*	.094*	.704*			.139*	. 045	.706*		. 046		.094*	.706*
20		.236*	.244*				.237*	.238*				. 181	.246*	
ECV	. 190	. 084	. 571	. 156	. 063	. 101	. 259	. 602	. 152	. 139	. 249	. 055	. 439	. 118
ω	. 917	. 465	. 894	. 749	. 803	. 903	. 465	. 894	. 754	. 917	. 941	. 425	. 920	. 749
$\omega^{\text {H }} / \omega_{\text {HS }}$. 149	. 376	. 689	. 707	. 145	. 166	. 405	. 722	. 714	. 139	. 890	. 364	. 705	. 706

Table S9. Continued.

	DIF-DDF-PT-IM+CM+BF Model b					
Item	DDF	DIF	IM	PT	BF	CM
02	$.369^{*}$				$.768^{*}$	
04	$.51^{*}$				$.496^{*}$	$.394^{*}$
11	.095				$.663^{*}$	
12	$.186^{*}$				$.556^{*}$	
17	$.187^{*}$				$.481^{*}$	
01		.054			$.800^{*}$	
03		$.585^{*}$			$.437^{*}$	
06		$.215^{*}$			$.681^{*}$	
07		$.680^{*}$			$.531^{*}$	
09		$.163^{*}$			$.773^{*}$	
13		$.318^{*}$			$.730^{*}$	
14		$.297^{*}$			$.620^{*}$	
05				$.141^{*}$	-.044	$.469^{*}$
08				$.766^{*}$	$.200^{*}$	
10			.040		$.072^{*}$	$.695^{*}$
15			1.492		$.160^{*}$	
16			.215		$.103^{*}$	
18			.006		.026	$.578^{*}$
19			.060		.046	$.712^{*}$
20				$.192^{*}$	$.241^{*}$	
ECV	.053	.087	.190	.057	.512	.125
ω	.803	.902	.734	.410	.912	.754
$\omega_{\mathrm{H}} / \omega_{\text {HS }}$.139	.170	.700	.362	.734	.714

* $p<.05$.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; CM
$=$ Common Method Factor - latent factor for negatively worded items; ECV $=$ Explained Common Variance. ${ }^{\text {a }}=$ resulted in a negative residual variance for item $15(-2.184) .{ }^{\text {b }}=$ resulted in a negative residual variance for item $15(-1.211)$

Table S10
Standardized Parameter Estimates for the Common Methods + Bifactor Models - Philippines Sample

	DI/DDF-EOT+CM+BF Model				DIF-DDF-EOT+CM+BF Model					DI/DDF-IM-PT+CM+BF Model ${ }^{\text {a }}$				
Item	DI/DDF	EOT	BF	CM	DDF	DIF	EOT	BF	CM	DI/DDF	IM	PT	BF	CM
02	. $697 *$.311*		-. 030			.772*						
04	. $630 *$. 030	. 699	-. 011			.538*	.394*					
11	. 560 *		.393*		. 126			.681*						
12	. 365 *		. $424 *$. 770			.518*						
17	. 358 *		.330*		. 072			.479*						
01	.704*		. 351 *			. 088		.778*						
03	. $306 *$.395*			.463*		.412*						
06	.450*		.415*			. 020		.609*						
07	. $374 *$.433*			.470*		.490*						
09	.649*		. $375 *$. 078		.750*						
13	.615*		.471*			.292*		.740*						
14	. $443 *$.455*			. 167		.600*						
05		.317*	-. 038	. 379			. 039	. 024	.526*					
08		. 172	.484*				.458*	.290*						
10		. 323 *	-. 001	. 311			. 108	-. 107	.468*					
15		-. 006	.294*				.436*	. 061						
16		. 024	. $325 *$. 395 *	.144*						
18		.484*	-. 167	. 103			. 043	-.134*	.462*					
19		.695*	. 017	. 274			. 159	. 019	.634*					
20		-. 119	.525*				. 309 *	.308*						
ECV	. 474	. 094	. 348	. 084	. 076	. 069	. 262	. 660	. 114					
ω	. 897	. 478	. 871	. 537	. 793	. 858	. 430	. 873	. 649					
$\omega_{\mathrm{H}} / \omega_{\mathrm{HS}}$. 591	. 264	. 387	. 532	. 068	. 094	. 385	. 748	. 634					

Table S10, Continued

	DIF-DDF-PT-IM+CM+BF Model					
Item	DDF	DIF	IM	PT	BF	CM
02	.190				$.745^{*}$	
04	.567				$.500^{*}$	$.452^{*}$
11	.021				$.689^{*}$	
12	.003				$.540^{*}$	
17	.065				$.484^{*}$	
01		.063			$.773^{*}$	
03		$.471^{*}$			$.427^{*}$	
06		-.024			$.617^{*}$	
07		$.432^{*}$			$.513^{*}$	
09		.041			$.750^{*}$	
13		$.253^{*}$			$.756^{*}$	
14		.120			$.616^{*}$	
05				.187	.005	$.653^{*}$
08				.406	$.307^{*}$	
10			$.254^{*}$		-.098	$.374^{*}$
15			.091		.084	
16			.060		$.159^{*}$	
18			$.358^{*}$		$-.125^{*}$	$.317^{*}$
19			$.588^{*}$.026	$.459^{*}$
20				.256	$.324^{*}$	
ECV						
ω	.770	.859	.296	.353	.867	.654
$\omega_{\mathrm{H}} / \omega_{\text {HS }}$.052	.068	.295	.218	.776	.639

* $p<.05$.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying
Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; CM
= Common Method Factor - latent factor for negatively worded items; ECV $=$ Explained Common Variance. ${ }^{\text {a }}=$ No Convergence, number of iterations exceeded for DI/DDF-PT-IM+CM+BF Model.

MG-CFA of the DI/DDF-EOT+CM+BF Model

In the main article, multiple group confirmatory factor analysis (MG-CFA) was performed on a DI/DDF-EOT bifactor model with all the negatively worded items dropped. Across the 18 CFA models examined in the main article, the $\mathrm{DI} / \mathrm{DDF}-\mathrm{EOT}+\mathrm{CM}+\mathrm{BF}$ was the better fitting model between the U.S. and Philippines sample. The goal for this section is to present the results of the MG-CFA on the DI/DDF-EOT+CM+BF model. MG-CFA procedures were identical to those reported in the main article.

A configural model was estimated, with the U.S. sample as the reference group. Metric invariance model was subsequently estimated by constraining unstandardized item factor loadings as equal across samples. The metric invariance model resulted in a significantly worse model fit relative to the configural model $\left(-2 \Delta L L_{\text {corrected }}=62.389, \Delta d f=41, p=.02\right)$, and the source of model misfit stemmed from the factor loading from the alexithymia general factor to item 18 (unstandardized factor loading U.S. $=0.077, p=.02 ; \mathrm{PH}=-0.109, p=.07$). Allowing item 18 - general alexithymia factor loading to vary across samples did not result in a significantly worse model fit compared to the configural model $\left(-2 \Delta L L_{\text {corrected }}=53.572, \Delta d f=\right.$ 40, $p=.07$).

The scalar invariance model was estimated by constraining item intercepts to be equal across samples. Model comparisons indicated significant decrease in model fit relative to the partial metric invariance model $\left(-2 \Delta L L_{\text {corrected }}=132.950, \Delta d f=16, p<.01\right)$. Sources of model misfit stemmed from items $1(\mathrm{US}=2.347 ; \mathrm{PH}=2.519), 6(\mathrm{US}=2.356 ; \mathrm{PH}=2.628), 7(\mathrm{US}=$ $1.931 ; \mathrm{PH}=2.099), 13(\mathrm{US}=2.053 ; \mathrm{PH}=1.943)$, and $18(\mathrm{US}=2.170 ; \mathrm{PH}=2.721)$. Allowing these items intercepts to vary across samples did not result in a worse model fit compared to the partial metric invariance model $\left(-2 \Delta L L_{\text {corrected }}=19.370, \Delta d f=11, p=.05\right)$.

Due to the non-invariance in the metric and scalar invariance models, residual variances for items $1,6,7,13$, and 18 were allowed to vary across samples. Residual variance invariance model was subsequently estimated, and model comparisons indicated a significantly worse fit compared to the partial scalar invariance model $\left(-2 \Delta L L_{\text {corrected }}=53.713, \Delta d f=15, p<.01\right)$. After unconstraining residual variances for items 3,5 , and 14 , the partial residual variance invariance model did not result in a worse model compared to the partial scalar invariance model ($\left.2 \Delta L L_{\text {corrected }}=13.594, \Delta d f=12, p=.33\right)$.

For the latent factor variance invariance model, latent factor variances were constrained to 1 for both samples, which resulted in a significantly worse model fit compared to the partial residual variance invariance model $\left(-2 \Delta L L_{\text {corrected }}=38.291, \Delta d f=4, p<.01\right)$. Sources of model misfit stemmed from the DI/DDF, EOT, and the CM. With the U.S. sample set as the reference group (i.e., latent factor variance set at 1), the Philippines sample had less variability in the DI/DDF (0.479), EOT (0.697), and CM (0.588) latent factors. Allowing these latent factors to vary across samples did not result in a worse fit compared to the partial residual variance invariance model $\left(-2 \Delta L L_{\text {corrected }}=2.687, \Delta d f=1, p=.10\right)$.

For the latent factor mean invariance model, latent factor means were constrained to 0 for both samples, which resulted in a significantly worse model fit compared to the partial latent factor variance invariance model $\left(-2 \Delta L L_{\text {corrected }}=236.938, \Delta d f=4, p<.01\right)$. Sources of model misfit stemmed from the general alexithymia factor and the common methods factor. With the U.S. sample as the reference group (i.e., latent factor mean $=0$), results indicates that the Philippines sample had higher alexithymia general latent factor mean (1.011, $p<.01$) but lower common method latent factor mean $(-0.284, p<.01)$.

