Toronto Alexithymia Scale - 20: Examining 18 Competing Factor Structure Solutions in a U.S. and the Philippines Sample

Supplemental Materials

Antover P. Tuliao ^a, Alicia K. Klanecky ^b, Bernice Vania N. Landoy ^c, and Dennis E. McChargue ^d

^aCommunity, Family, and Addiction Sciences, Texas Tech University

^bDepartment of Psychology, Creighton University

^cUniversity of the Philippines – Visayas

^dDepartment of Psychology, University of Nebraska – Lincoln

Table S1
Nested and Non-nested Pairwise Model Comparisons for the U.S. Sample

		1	2	3	4	5	6	7
			A. Co	orrelated Latent I	Factor Model			
1	ALEX							
2	DI/DDF-EOT	181.505(1)*						
3	DDF-DIF-EOT	429.274 (3)*	178.855(2)*					
4	DI/DDF-IM-PT	221.625 (3)*	2.49 (2)	-11.754*				
5	DDF-DIF-IM-PT	433.101 (6)*	136.124 (5)*	3.478 (3)*	203.345 (3)*			
			B. Com	mon Method Fac	ctor Model			
6	ALEX+CM	767.230 (5)*	8.646 *	0.126	8.340 *	0.377		
7	DI/DDF-EOT+CM	19.557 *	412.987 (5)*	3.851 *	12.139 *	3.931 *	58.788 (1)*	
8	DDF-DIF-EOT+CM	23.390 *	18.140 *	379.208 (5)*	17.792 *	12.567 *	207.345 (3)*	153.496 (2)*
9	DI/DDF-IM-PT+CM	19.796 *	12.906 *	4.532 *	4648.353 (5)*	4.598 *	159.762 (3)*	80.239 (2)*
10	DDF-DIF-IM-PT+CM	23.599 *	18.311*	13.183 *	18.021 *	2515.509 (5)*	367.619 (6)*	312.622 (5)*
			(C. Bifactor Mod	lel			
11	DI/DDF-EOT+BF	1152.331 (20)*	20.043 *	13.420 *	20.073 *	13.453 *	10.906 *	6.006 *
12	DDF-DIF-EOT+BF	927.763 (20)*	20.955 *	16.410 *	20.999*	16.379 *	11.655 *	6.812 *
13	DI/DDF-IM-PT+BF	1084.514 (20)*	13.976 *	7.992 *	14.393*	8.375 *	5.866 *	2.201*
14	DDF-DIF-IM-PT+BF	937.253 (20)*	14.905*	9.949 *	15.333*	10.420 *	6.626 *	2.925 *
			D. Bifactor +	Common Metho	ds Factor Model			
15	DI/DDF-EOT+BF+CM	1580.320 (25)*	23.728 *	18.139 *	23.336*	17.852 *	770.599 (20)*	19.848 *
16	DDF-DIF-EOT+BF+CM	1532.426 (25)*	23.895*	19.124 *	23.526 *	18.802*	743.063 (20)*	20.142 *
17	DI/DDF-IM-PT+BF+CM	1567.636 (25)*	23.474 *	17.908 *	23.208 *	17.711 *	755.127 (20)*	17.711 *
18	DDF-DIF-IM-PT+BF+CM	1543.497 (25)*	23.576 *	18.863 *	23.339 *	18.649 *	743.126 (20)*	18.002 *

Table Continues.

Table S1. Continued.

		8	9	10	11	12	13	14	15	16	17
				A. Co	rrelated Laten	t Factor Mod	el				
1	ALEX										
2	DI/DDF-EOT										
3	DDF-DIF-EOT										
4	DI/DDF-IM-PT										
5	DDF-DIF-IM-PT										
				B. Con	mmon Method	d Factor Mod	el				
6	ALEX+CM										
7	DI/DDF-EOT+CM										
8	DDF-DIF-EOT+CM										
9	DI/DDF-IM-PT+CM	-9.900*									
10	DDF-DIF-IM-	95.198	205.770								
	PT+CM	(3)*	(3)*								
					C. Bifactor	Model					
11	DI/DDF-EOT+BF	-0.674	5.071 *	-1.637							
12	DDF-DIF-EOT+BF	0.265	5.862 *	-0.794	2.196*			_			
13	DI/DDF-IM-PT+BF	-3.740 *	1.455	-4.539 *	-8.841*	-7.789*					
14	DDF-DIF-IM-PT+BF	-3.164 *	2.169 *	-4.017 *	-4.857 *	-8.942*	2.196*				
				D. Bifactor	+ Common M	ethods Factor	Model				
15	DI/DDF- EOT+BF+CM	12.976 *	19.174 *	11.922 *	478.484 (5)*	11.061 *	14.446 *	12.512 *			
16	DDF-DIF- EOT+BF+CM	15.119 *	19.337 *	13.749 *	12.857 *	1308.484 (5)*	13.743 *	13.645*	0.379		
17	DI/DDF-IM- PT+BF+CM	11.098 *	17.629 *	10.588 *	13.936 *	10.658 *	509.713 (5)*	12.511 *	-2.153 *	-1.481	
18	DDF-DIF-IM- PT+BF+CM	12.675 *	17.898 *	12.261 *	12.714 *	12.490 *	13.972 *	1957.304 (5)*	-0.782	-1.898	0.519

^{*} *p* < .05.

Note: Figures in orange = non-nested model pairwise comparisons using Vuong (1989) *z*-test. A significant Vuong test (p < .05) indicates that the model with a smaller BIC is better compared to the model with a larger BIC. Figures in blue = nested model comparisons using $-2\Delta LL_{\text{corrected}}$ (Δdf).

Table S2
Nested and Non-nested Pairwise Model Comparisons for the Philippines Sample

	1	2	3	4	5	6	7	8
		A. Co	rrelated Latent l	Factor Model				
1 ALEX								
2 DI/DDF-EOT	11.204 (1)*							
3 DDF-DIF-EOT	31.667 (3)*	17.245 (2)*						
4 DI/DDF-IM-PT	21.716 (3)*	6.115 (2)*	0.017					
5 DDF-DIF-IM-PT	43.027 (4)*	21.325 (5)*	8.693 (3)*	20.615 (3) *				
		B. Co	mmon Method l	Factor Model				
6 ALEX+CM	159.932 (5)*	5.795 *	5.140 *	5.083 *	4.740 *			
7 DI/DDF-EOT+CM	8.056 *	339.03 (5)*	6.496 *	6.501 *	6.128 *	15.54 (1)*		
8 DDF-DIF-EOT+CM	8.180 *	7.190 *	253.85 (5)*	6.657 *	6.489 *	29.30 (3)*	8.86 (2)*	
9 DI/DDF-IM-PT+CM	7.978 *	7.175 *	6.538 *	4126.68 (5)*	6.158 *	24.80 (3)*	6.31 (2)*	
10 DDF-DIF-IM-PT+CM	M 8.304 *	7.400 *	7.060 *	6.904 *	N/A	55.18 (6)*	32.33 (5)*	24.73 (3)*
			C. Bifactor M	Iodel				
11 DI/DDF-EOT+BF	195.06 (20)*	4.660 *	4.128 *	3.935 *	3.736 *	-0.555	-3.612 *	-3.611 *
12 DDF-DIF-EOT+BF	162.10 (20)*	2.907 *	2.445 *	2.630 *	2.466 *	-4.349 *	-5.982 *	-6.343 *
		D. Bifactor	+ Common Me	thod Factor Mod	lel			
13 DI/DDF-EOT+ BF+C	CM 232.13 (25)*	5.138 *	4.626 *	4.764 *	4.506 *	86.95 (20)*	-1.567	-1.624
14 DDF-DIF-EOT+BF+	CM 237.04 (25)*	5.147 *	4.775 *	4.678 *	4.524 *	85.89 (20)*	-2.760 *	-3.100 *
15 DDF-DIF-IM-PT+BF	F+CM 202.17 (25)*	3.656 *	3.293 *	3.368 *	3.237 *	56.54 (20)*	-5.094 *	-5.480 *

Table Continues.

Table S2. Continued.

	9	10	11	12	13	14
	A. (nt Factor Model			21
1 ALEX						
2 DI/DDF-EOT						
3 DDF-DIF-EOT						
4 DI/DDF-IM-PT						
5 DDF-DIF-IM-PT						
	В. (Common Metho	d Factor Model			
6 ALEX+CM						
7 DI/DDF-EOT+CM						
8 DDF-DIF-EOT+C	M					
9 DI/DDF-IM-PT+C	M					
10 DDF-DIF-IM-PT+0	CM 35.09 (3)*					
		C. Bifactor	Model			
11 DI/DDF-EOT+BF	-3.553 *	-4.091 *			_	
12 DDF-DIF-EOT+BI	-5.914 *	-6.568 *	-3.089 *			
	D. Bifact	or + Common N	Method Factor M	Iodel		
13 DI/DDF-EOT+ BF	+CM -1.568	-2.231 *	36.95 (5)*	4.252 *		
14 DDF-DIF-EOT+BI	F+CM -2.966 *	-4.007 *	1.073	78.20 (5)*	-0.578	
15 DDF-DIF-IM-PT+	BF+CM -4.869 *	-5.704 *	-1.342	2.695 *	-3.139 *	-3.444 *

p < .05.

Note: Figures in orange = non-nested model pairwise comparisons using Vuong (1989) z-test. A significant Vuong test (p < .05) indicates that the model with a smaller BIC is better compared to the model with a larger BIC. Figures in blue = nested model comparisons using $-2\Delta LL_{\rm corrected}$ (Δdf). The DI/DDF-IM-PT+BF, DDF-DIF-IM-PT+BF, and DI/DDF-IM-PT+BF+CM models were not included because the models resulted in a lack of convergence. N/A = $-2\Delta LL_{\rm corrected}$ resulted in a negative statistic, which is non-interpretable.

Table S3
Standardized Parameter Estimates for the Correlated Latent Factor Models – U.S. Sample

		DI/DDF	E-EOT										
	ALEX Model	Mod	lel	DIF-D	DF-EOT	Model	DI/DDF	F-PT-IM I	Model	DIF	F-DDF-P	Γ-IM Mod	del
Item	ALEX	DI/DDF	EOT	DDF	DIF	EOT	DI/DDF	IM	PT	DDF	DIF	IM	PT
02	.738*	.741*		$.809^{*}$.741*			$.809^{*}$			
04	.524*	.527*		.614*			.527*			.614*			
11	.655*	.653*		$.685^{*}$.653*			.685*			
12	.563*	$.560^{*}$		$.627^{*}$			$.560^{*}$.627*			
17	.493*	$.486^{*}$		$.548^{*}$.486*			$.549^{*}$			
01	.774*	.777*			.765*		.777*				.765*		
03	.565*	$.564^{*}$			$.592^{*}$.564*				$.592^{*}$		
06	$.706^{*}$	$.705^{*}$.712*		.705*				.712*		
07	.665*	.663*			.696*		.663*				.696*		
09	$.782^{*}$	$.784^{*}$			$.785^{*}$.784*				$.786^{*}$		
13	.791*	.793*			.812*		.793*				.812*		
14	$.679^{*}$	$.678^{*}$			$.699^{*}$		$.678^{*}$				$.699^{*}$		
05	002		$.428^{*}$			$.428^{*}$.535*				.533*
08	$.206^{*}$		$.184^{*}$			$.184^{*}$			$.259^{*}$				$.261^{*}$
10	.116*		$.672^{*}$.673*		$.672^{*}$.673*	
15	.155*		.072			.074		.071				.074	
16	$.100^*$.002			.003		.000				.002	
18	.075*		$.582^{*}$.581*		$.582^{*}$.581*	
19	.091*		$.762^{*}$.761*		.765*				.765*	
20	.246*		.064			.064			.116				.117
m	47.325	27.828	19.528	12.985	14.863	19.528	27.828	12.237	7.295	12.985	14.863	12.237	7.295
sd	10.580	8.975	3.808	4.215	5.561	3.808	8.975	2.748	1.913	4.215	5.561	2.748	1.913
α	.851	.902	.551	.791	.886	.551	.902	.497	.284	.791	.886	.497	.284
ω	.856	.903	.539	.791	.888	.518	.903	.518	.233	.792	.888	.519	.330

Latent Factor Correla	tions											
1	1		1			1			1			
2	.131*	1	.835*	1		.126*	1		.835*	1		
3			.147*	$.120^{*}$	1	.151	$.759^{*}$	1	.145*	$.114^{*}$	1	
4									.141	.151	$.760^{*}$	1

^{*}p < .05.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking.

Table S4
Standardized Parameter Estimates for the Correlated Latent Factor Models – Philippines Sample

	ALEX	DI/DDI											
	Model	Mod		DIF-D	DF-EOT	Model	DI/DDF	F-PT-IM I	Model	DIF	F-DDF-P	Γ-IM Mo	del
Item	ALEX	DI/DDF	EOT	DDF	DIF	EOT	DI/DDF	IM	PT	DDF	DIF	IM	PT
02	.738*	$.740^{*}$.763*			.738*			.764*			
04	.514*	$.527^{*}$.564*			.520*			.559*			
11	.686*	.685*		$.706^{*}$.686*			$.706^{*}$			
12	.542*	.538*		.549*			.540*			$.550^{*}$			
17	$.480^{*}$.478*		$.490^{*}$.477*			$.492^{*}$			
01	.775*	$.780^{*}$			$.784^{*}$		$.778^{*}$				$.781^{*}$		
03	$.482^{*}$.479*			$.486^{*}$.484*				$.491^{*}$		
06	.603*	.598*			.601*		.601*				.604*		
07	.558*	.554*			.565*		.557*				.567*		
09	.745*	.746*			.754*		.746*				.754*		
13	.781*	.783*			$.788^{*}$.783*				$.785^{*}$		
14	.628*	.624*			.627*		.627*				.630*		
05	.031		.444*			.452*			.109				.076
08	.311*		.110			.101			.465*				.467*
10	077		.431*			$.429^{*}$.398*				.411*	
15	.072		044			035		011				.001	
16	.154*		.027			.033		.031				.037	
18	111		$.482^{*}$.493*		.434*				.457*	
19	.038		.734*			$.720^{*}$.816*				$.778^{*}$	
20	.323*		115			121			.416*				.430*
m	56.321	35.995	20.356	15.637	20.397	20.356	35.995	12.705	7.649	15.637	20.397	12.705	7.649
sd	9.743	8.373	3.328	3.686	5.264	3.328	8.373	2.366	1.780	3.686	5.264	2.366	1.780
α	.833	.888	.450	.750	.848	.450	.888	.360	.225	.750	.848	.360	.225
ω	.838	.888	.337	.749	.847	.338	.888	.379	.223	.749	.848	.384	.223
	.050	.000	.557	., .,	.017	.550	.000	.517	.275	., .,	.0.10	.501	.270

Latent Factor Corr	relations											
1	1		1			1			1			
2	.011	1	.935*	1		.004	1		.935*	1		
3			.058	054	1	$.687^{*}$.144	1	.056	039	1	
4									.599*	$.709^{*}$.096	1

^{*} *p* < .05.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking.

Table S5 Standardized Parameter Estimates for the Common Method Factor Models - U.S. Sample

	ALEX Mod			F-EOT+ Model	-CM	DIF-L	DF-FO	T+CM	Model	DI/DDF-	PT-IM-	-CM M	odel	DII	F-DDF-1	PT-IM+	CM Mc	odel
Item	ALEX	CM	DI/DDF	EOT	CM	DDF	DIF	EOT	CM	DI/DDF	IM	PT	CM	DDF	DIF	IM	PT	CM
02	.744*	CIVI	.746*	LOI	CIVI	.823*	DII	LOI	CIVI	.745*	1171	1 1	CIVI	.820*	DII	1111	11	CIVI
04	.519*	.356*	.520*		.378*	.612*			.392*	.510*			.372*	.601*				.383*
11	.657*	.550	.656*		.570	.684*			.372	.657*			.512	.684*				
12	.564*		.563*			.625*				.562*				.627*				
17	.492*		.491*			.549*				.489*				.554*				
01	.776*		.777*				.765*			.777*				.55	.765*			
03	.561*		.559*				.591*			.560*					.591*			
06	.708*		.707*				.714*			.707*					.714*			
07	.661*		.659*				.696*			.660*					.696*			
09	.786*		.787*				.788*			.787*					.787*			
13	.789*		.789*				.810*			.789*					$.810^{*}$			
14	.676*		$.674^{*}$.698*			.675*					.698*			
05	022	.463*		.073	.456*			.082	.465*			.049	.457*				.063	.466*
08	.201*			.434*				.433*				.452*					.465*	
10	$.092^{*}$.693*		.159*	$.684^{*}$.183*	.681*		$.110^{*}$.692*			.133*		.690*
15	.154*			.471*				.481*			.590*					.640*		
16	$.100^{*}$.460*				.457*			.557*					.514*		
18	.053	.573*		.074	.574*			.093	.571*		.032		.578*			.044		.577*
19	$.065^{*}$.723*		.179*	$.708^{*}$.204*	.698*		.123*		.719*			.147*		.711*
20	.245*			.382*				.376*				.450*					.442*	
Laten	t Factor C	Correlati	ons															
			1			1				1				1				
			.373*	1		.827*	1			.222*	1			.827*	1			
						.364*	.352*	1		$.474^{*}$.592*	1		.279*	.188*	1		
														$.392^{*}$	$.469^{*}$	$.188^{*}$	1	

*p < .05.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; CM = Common Method Factor – latent factor for negatively worded items.

Table S6
Standardized Parameter Estimates for the Common Method Factor Models – Philippines Sample

	ALEX Mod			F-EOT+	CM	DIF-I	DDF-EO	T+CM I	Model	DI/DDI	F-PT-IM⊦	-CM Mo	odel	DI	F-DDF-	·PT-IM+0	CM Mo	del
Item	ALEX	CM	DI/DDF	ЕОТ	CM	DDF	DIF	ЕОТ	CM	DI/DDF	IM	PT	CM	DDF	DIF	IM	PT	CM
02	.744*		.741*		_	.767*			_	.740*				.762*				
04	.519*	.356*	.534*		.358*	.558*			.357*	.533*			.361*	.554*				.359*
11	.657*		.686*			.707*				.685*				.704*				
12	.564*		.542*			.555*				.540*				.561*				
17	.492*		.481*			.493*				$.478^{*}$.503*				
01	.776*		.777*				.781*			$.778^{*}$					$.782^{*}$			
03	.561*		$.480^{*}$.488*			.483*					.494*			
06	$.708^{*}$.603*				.604*			.603*					.603*			
07	.661*		.556*				.567*			.557*					.566*			
09	$.786^{*}$.747*				$.752^{*}$			$.749^{*}$.756*			
13	$.789^{*}$.781*				.787*			.781*					.784*			
14	.676*		.625*				.631*			.625*					.627*			
05	022	.463*		.066	.518*			.067	.519*			.037	.515*				.017	.519*
08	.201*			.540*				.544*				$.469^{*}$.471*	
10	$.092^{*}$.693*		009	.466*			007	$.469^{*}$.028		$.468^{*}$.004		.470*
15	.154*			.301*				$.298^{*}$.343*					.390*		
16	$.100^{*}$.376*				.373*			$.382^{*}$.394*		
18	.053	.575*		116	.473*			115	$.471^{*}$		092		$.472^{*}$			064		.468*
19	$.065^{*}$.723*		.109	.656*			.112	.655*		.113		.656*			.098		.650*
20	.245*			.501*				.500*				.444*					.437*	
Laten	t Factor C	Correlati	ons															
			1			1				1				1				
			.523*	1		.936*	1			.316	1			.937*	1			
						.497*	.524*	1		.673*	1.245*	1		.398* .583*	.217 .708*	1 1.171*	1	

*p < .05.

Note: ALEX = Alexithymia; DI/DDF = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; CM = Common Method Factor – latent factor for negatively worded items.

Table S7
Standardized Parameter Estimates for the Bifactor Models – U.S. Sample

	DI/DDF-	EOT+BI	Model	DIF	-DDF-E	OT+BF N	Model	DI/DI	OF-PT-IN	M+BF M	odel	DI	F-DDF	PT-IM-	BF M	odel
Item	DI/DDF	EOT	BF	DDF	DIF	EOT	BF	DI/DDF	IM	PT	BF	DDF	DIF	IM	PT	BF
02	.507*		.693*	.242			.776*	.499*			$.698^{*}$.230				$.779^{*}$
04	.416*		.468*	.320			.524*	$.410^{*}$.474*	.301				.529*
11	$.229^{*}$.619*	$.202^{*}$.645*	.223*			.621*	.205*				.644*
12	.248*		.527*	$.408^{*}$.525*	.243*			.529*	.419*				.524*
17	.221*		.459*	$.395^{*}$.452*	.217*			.461*	.402*				.452*
01	.292*		.741*		.042		.816*	.284*			.745*		.045			$.817^{*}$
03	278^{*}		.640*		.587*		.433*	286^{*}			.638*		.588*			.431*
06	.051		.704*		.223*		$.678^{*}$.044			.705*		.227*			.676*
07	330^{*}		.756*		.684*		.525*	339^{*}			.753*		.687*			.522*
09	.131		.764*		$.170^{*}$.773*	.123			.765*		.174*			.771*
13	025		$.800^{*}$.327*		.725*	033			$.800^{*}$.331*			.723*
14	076		.693*		.308*		.613*	083			.692*		.312*			.611*
05		.436*	012			.435*	027			.141	008				.150	023
08		$.148^{*}$.207*			$.159^{*}$.195*			.939	$.205^{*}$.895	.191*
10		.662*	$.105^{*}$.666*	$.079^{*}$		$.650^{*}$		$.107^{*}$.655*		.083*
15		.042	$.141^{*}$.050	$.148^{*}$.041		$.141^{*}$.048		$.147^{*}$
16		022	$.096^{*}$			015	$.099^{*}$		038		$.095^{*}$			032		$.098^{*}$
18		.579*	$.077^{*}$.583*	.028		.583*		$.078^{*}$.588*		.030
19		$.760^{*}$.083*			.763*	.050		$.769^*$		$.084^{*}$.771*		.053
20		.019	.246*			.032	$.239^{*}$.155	$.244^{*}$.168	.235*
												072	100	110	001	600
ECV	.125	.154	.721	.079	.115	.274	.656	.112	.121	.101	.665	.073	.109	.119	.091	.608
ω	.915	.528	.881	.802	.903	.529	.882	.915	.515	.477	.887	.802	.903	.515	.454	.886
ω_{H}/ω_{HS}	.036	.461	.801	.182	.174	.479	.743	.032	.481	.423	.817	.180	.178	.493	.409	.755

^{*}p < .05.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; ECV = Explained Common Variance.

Table S8
Standardized Parameter Estimates for the Bifactor Models – Philippines Sample

	DI/DDF-l	EOT+BI	F Model	DIF-	DDF-E	OT+BF N	Model	DI/DDI	F-PT-IN	/I+BF N	Modela	DI	F-DDF	-PT-IM-	+BF Mo	odela
Item	DI/DDF	EOT	BF	DDF	DIF	EOT	BF	DI/DDF	IM	PT	ALEX	DDF	DIF	IM	PT	ALEX
02	.701*		.272*	.233			.741*									
04	.687*		147^{*}	.524			.491*									
11	$.608^{*}$.315*	.064			.687*									
12	.427*		.353*	.003			.539*									
17	.404*		.266*	.066			$.482^{*}$									
01	.720*		.302*		.054		.774*									
03	.378*		.307*		.471*		.432*									
06	.472*		$.400^{*}$		027		.616*									
07	.425*		.379*		.427*		.516*									
09	.652*		.363*		.035		.749*									
13	.687*		.361*		.244*		.759*									
14	.520*		.348*		.108		.621*									
05		.396*	266			$.440^{*}$.022									
08		.351*	.456*			.124	.316*									
10		.376*	212			$.425^{*}$	090									
15		.112	.314*			040	.084									
16		.182	.293*			.033	.162*									
18		.389*	303^{*}			$.478^{*}$	119									
19		.682*	236			$.748^{*}$.037									
20		.085	$.485^{*}$			107	$.329^{*}$									
ECV	.581	.113	.306	.043	.066	.268	.769									
ω	.892	.522	.852	.757	.859	.396	.859									
ω_{H}/ω_{HS}	.694	.479	.226	.058	.064	.334	.796									

^{*}p < .05.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; ECV = Explained Common Variance. ^a = No Convergence, number of iterations exceeded.

Table S9
Standardized Parameter Estimates for the Common Methods + Bifactor Models – U.S. Sample

	DI/DDF-EOT+CM+BF Model				DIF-DDF-EOT+CM+BF Model				DI/DDF-PT-IM+CM+BF Model ^a					
Item	DI/DDF	EOT	BF	CM	DDF	DIF	EOT	BF	CM	DI/DDF	IM	PT	BF	CM
02	.663*		.567*		.372*			.767*		.656*			.576*	
04	.546*		.355*	.413*	.499*			.497*	.402*	.542*			.361*	.408*
11	.343*		.559*		.102			.661*		.334*			.565*	
12	.342*		.464*		.199*			.551*		.334*			.470*	
17	$.299^{*}$.402*		.202*			.475*		.290*			.409*	
01	.436*		.665*			.047		.803*		.428*			.671*	
03	124		.679*			.583*		.439*		131			.676*	
06	.195		.679*			.213*		.682*		.185			.682*	
07	145		.799*			.681*		.533*		155			.796*	
09	$.289^{*}$.720*			.159*		.775*		.278*			.724*	
13	.136		.792*			.313*		.732*		.126			.793*	
14	.056		.700*			.293*		.621*		.046			.701*	
05		.071	009	.475*			.085*	041	.473*			.135	012	.472*
08		.294*	.212*				.303*	.196*				.789*	.214*	
10		.092*	.107*	.686*			.111*	.070*	.689*		.030		.107*	.690*
15		.525*	.122*				.519*	.151*			1.80		.130*	
16		.581*	.087*				.570*	.095*			.181		.095*	
18		.014	.099*	.573*			.044	.025	.577*		001		.097*	.572*
19		.113*	.094*	.704*			.139*	.045	.706*		.046		.094*	.706*
20		.236*	.244*				.237*	.238*				.181	.246*	
ECV	.190	.084	.571	.156	.063	.101	.259	.602	.152	.139	.249	.055	.439	.118
ω	.917	.465	.894	.749	.803	.903	.465	.894	.754	.917	.941	.425	.920	.749
ω_H/ω_{HS}	.149	.376	.689	.707	.145	.166	.405	.722	.714	.139	.890	.364	.705	.706

Table S9. Continued.

	DIF-DDF-PT-IM+CM+BF Model ^b									
Item	DDF	DIF	IM	PT	BF	CM				
02	.369*				.768*					
04	.511*				.496*	.394*				
11	.095				.663*					
12	.186*				.556*					
17	.187*				.481*					
01		.054			.800*					
03		.585*			.437*					
06		.215*			.681*					
07		.680*			.531*					
09		.163*			.773*					
13		.318*			.730*					
14		.297*			.620*					
05				.141*	044	.469*				
08				.766*	.200*					
10			.040		.072*	.695*				
15			1.492		.160*					
16			.215		.103*					
18			.006		.026	.578*				
19			.060		.046	.712*				
20				.192*	.241*					
ECV	.053	.087	.190	.057	.512	.125				
ω	.803	.902	.734	.410	.912	.754				
ω_H/ω_{HS}	.139	.170	.700	.362	.734	.714				

^{*}p < .05.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; CM

= Common Method Factor – latent factor for negatively worded items; ECV = Explained Common Variance. a = resulted in a negative residual variance for item 15 (–2.184). b = resulted in a negative residual variance for item 15 (–1.211).

Table S10 $Standardized\ Parameter\ Estimates\ for\ the\ Common\ Methods + Bifactor\ Models - Philippines\ Sample$

	DI/DDF-EOT+CM+BF Model				DIF-DDF-EOT+CM+BF Model					DI/DDF-IM-PT+CM+BF Model ^a				
Item	DI/DDF	EOT	BF	CM	DDF	DIF	EOT	BF	CM	DI/DDF	IM	PT	BF	CM
02	.697*		.311*		030			.772*						
04	.630*		.030	.699	011			.538*	.394*					
11	$.560^{*}$.393*		.126			.681*						
12	.365*		.424*		.770			.518*						
17	.358*		.330*		.072			.479*						
01	$.704^{*}$.351*			.088		.778*						
03	.306*		.395*			.463*		.412*						
06	.450*		.415*			.020		.609*						
07	.374*		.433*			.470*		.490*						
09	.649*		.375*			.078		.750*						
13	.615*		.471*			.292*		.740*						
14	.443*		.455*			.167		.600*						
05		.317*	038	.379			.039	.024	.526*					
08		.172	.484*				.458*	.290*						
10		.323*	001	.311			.108	107	.468*					
15		006	.294*				.436*	.061						
16		.024	.325*				.395*	.144*						
18		.484*	167	.103			.043	134*	.462*					
19		.695*	.017	.274			.159	.019	.634*					
20		119	.525*				.309*	.308*						
ECV	.474	.094	.348	.084	.076	.069	.262	.660	.114					
ω	.897	.478	.871	.537	.793	.858	.430	.873	.649					
$\omega_{\rm H}/\omega_{\rm HS}$.591	.264	.387	.532	.068	.094	.385	.748	.634					

Table S10, Continued

	DIF-DDF-PT-IM+CM+BF Model									
Item	DDF	DIF	IM	PT	BF	CM				
02	.190				.745*					
04	.567				.500*	.452*				
11	.021				.689*					
12	.003				.540*					
17	.065				.484*					
01		.063			.773*					
03		.471*			.427*					
06		024			.617*					
07		.432*			.513*					
09		.041			.750*					
13		.253*			.756*					
14		.120			.616*					
05				.187	.005	.653*				
08				.406	.307*					
10			.254*		098	.374*				
15			.091		.084					
16			.060		.159*					
18			.358*		125*	.317*				
19			.588*		.026	.459*				
20				.256	.324*					
ECV	.043	.064	.054	.034	.720	.102				
ω	.770	.859	.296	.353	.867	.654				
ω_H/ω_{HS}	.052	.068	.295	.218	.776	.639				

*p < .05.

Note: DI/DD = Difficulty Identifying/Difficulty Describing Feelings; DDF = Difficulty Describing Feelings; DIF = Difficulty Identifying Feelings; EOT = Externally-Oriented Thinking; IM = Importance of Emotions; PT = Pragmatic Thinking; BF = Alexithymia General Factor; CM = Common Method Factor – latent factor for negatively worded items; ECV = Explained Common Variance. ^a = No Convergence, number of iterations exceeded for DI/DDF-PT-IM+CM+BF Model.

MG-CFA of the DI/DDF-EOT+CM+BF Model

In the main article, multiple group confirmatory factor analysis (MG-CFA) was performed on a DI/DDF-EOT bifactor model with all the negatively worded items dropped. Across the 18 CFA models examined in the main article, the DI/DDF-EOT+CM+BF was the better fitting model between the U.S. and Philippines sample. The goal for this section is to present the results of the MG-CFA on the DI/DDF-EOT+CM+BF model. MG-CFA procedures were identical to those reported in the main article.

A configural model was estimated, with the U.S. sample as the reference group. Metric invariance model was subsequently estimated by constraining unstandardized item factor loadings as equal across samples. The metric invariance model resulted in a significantly worse model fit relative to the configural model ($-2\Delta LL_{corrected} = 62.389$, $\Delta df = 41$, p = .02), and the source of model misfit stemmed from the factor loading from the alexithymia general factor to item 18 (unstandardized factor loading U.S. = 0.077, p = .02; PH = -0.109, p = .07). Allowing item 18 – general alexithymia factor loading to vary across samples did not result in a significantly worse model fit compared to the configural model ($-2\Delta LL_{corrected} = 53.572$, $\Delta df = 40$, p = .07).

The scalar invariance model was estimated by constraining item intercepts to be equal across samples. Model comparisons indicated significant decrease in model fit relative to the partial metric invariance model ($-2\Delta LL_{corrected} = 132.950$, $\Delta df = 16$, p < .01). Sources of model misfit stemmed from items 1 (US = 2.347; PH = 2.519), 6 (US = 2.356; PH = 2.628), 7 (US = 1.931; PH = 2.099), 13 (US = 2.053; PH = 1.943), and 18 (US = 2.170; PH = 2.721). Allowing these items intercepts to vary across samples did not result in a worse model fit compared to the partial metric invariance model ($-2\Delta LL_{corrected} = 19.370$, $\Delta df = 11$, p = .05).

Due to the non-invariance in the metric and scalar invariance models, residual variances for items 1, 6, 7, 13, and 18 were allowed to vary across samples. Residual variance invariance model was subsequently estimated, and model comparisons indicated a significantly worse fit compared to the partial scalar invariance model ($-2\Delta LL_{corrected} = 53.713$, $\Delta df = 15$, p < .01). After unconstraining residual variances for items 3, 5, and 14, the partial residual variance invariance model did not result in a worse model compared to the partial scalar invariance model ($-2\Delta LL_{corrected} = 13.594$, $\Delta df = 12$, p = .33).

For the latent factor variance invariance model, latent factor variances were constrained to 1 for both samples, which resulted in a significantly worse model fit compared to the partial residual variance invariance model ($-2\Delta LL_{corrected} = 38.291$, $\Delta df = 4$, p < .01). Sources of model misfit stemmed from the DI/DDF, EOT, and the CM. With the U.S. sample set as the reference group (i.e., latent factor variance set at 1), the Philippines sample had less variability in the DI/DDF (0.479), EOT (0.697), and CM (0.588) latent factors. Allowing these latent factors to vary across samples did not result in a worse fit compared to the partial residual variance invariance model ($-2\Delta LL_{corrected} = 2.687$, $\Delta df = 1$, p = .10).

For the latent factor mean invariance model, latent factor means were constrained to 0 for both samples, which resulted in a significantly worse model fit compared to the partial latent factor variance invariance model ($-2\Delta LL_{\rm corrected} = 236.938$, $\Delta df = 4$, p < .01). Sources of model misfit stemmed from the general alexithymia factor and the common methods factor. With the U.S. sample as the reference group (i.e., latent factor mean = 0), results indicates that the Philippines sample had higher alexithymia general latent factor mean (1.011, p < .01) but lower common method latent factor mean (-0.284, p < .01).