Table S2. Description of learning and screening algorithms in super learner (SL) library

	Learning algorithms	R package	Tuning parameters for instances of linear prediction (family = "gaussian")	Tuning parameters for instances of classification (family = "binomial")	Description
1.	Generalized linear models	stats	2020	2020	Constalized linear regression model with a legit
	Generalized additive models	gam	none deg.gam = 2 (quadratically penalized likelihood) cts.num = 4 (considers variables with four+ categories as continuous)	none deg.gam = 2 (quadratically penalized likelihood) cts.num = 4 (considers variables with four+ categoriesas continuous)	Generalized linear regression model with a logit link (Nelder & Wedderburn, 1972) Model with a logit link that estimates a summed vector of (not necessarily linear) functions for the predictors (Hastie & Tibshirani, 1986)
	Neural networks	nnet	size = 2 (number of units in a hidden layer); tested size = 5, 10 in a sensitivity analysis decay = 0 (weight decay parameter) rang = 0.5 (default[-rang, rang], initial random weights)	size = 2 (number of units in a hidden layer); tested size = 5, 10 in a sensitivity analysis decay = 0 (weight decay parameter) rang = 0.5 (default[-rang, rang], initial random weights)	Single-hidden-layer neural network algorithm (Cochocki & Unbehauen, 1993)
II.	Screening algorithms — applied to all classification algorithms				
	corP	stats	Method = 'pearson' minPvalue = 0.1 minscreen = 2	Method = 'pearson' minPvalue = 0.1 minscreen = 2	Predictor variables that are associated with the outcome at p-value <0.1 are selected; requires a minimum of two predictors to enter the model (Pearson, 1895)
	randomForest	randomForest	nVar = 10 ntree = 1000 mtry = (floor(sqrt(ncol(X))) nodesize = 5	nVar = 10 ntree = 1000 mtry = max(floor(sqrt(ncol(X)/3), 1)) nodesize = 1	Random trees grown in bagged samples of data and validated on unbagged data to select the best-ranked predictors of the outcome, resulting in a forest of decision trees (Liaw & Wiener, 2002)

References

Cochocki, A., & Unbehauen, R. (1993). Neural networks for optimization and signal processing. New York, NY. John Wiley & Sons, Inc.

Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1, 297-310, doi:10.1214/ss/1177013604

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. *R News*, *2*, 18-22. Retrieved from https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf Nelder, J., & Wedderburn, R. (1972). Generalized linear models. *Journal of the Royal Statistical Society. Series A (General)*, *135*, 370-384. doi:10.2307/2344614.

Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240-242.