Appendix

Lexicographic heuristic and Luce's choice axiom as additive model

The population is infinite with three types of people: 1) Price focused $\left.\left(U_{1}\right), 2\right)$ Quality focussed $\left(U_{2}\right)$, and 3) Network oriented $\left(U_{3}\right)$. Let p, q, and r be the probability of a person selected from U_{1}, U_{2}, and U_{3} respectively where $p>0, q>0, n>0$, and $p+q+n=1$.

At each time, one person from the population is selected and make the decision of buying the product A or B. At the time $\mathrm{t}=0$, there are $X_{a 0}$ bought the product A and $X_{b 0}$ persons baught product B. Let $X_{a t}$ and $X_{b t}$ be the number of persons $\left(X_{a t}+X_{b t}=X_{a 0}+X_{b 0}+t\right)$ bought the product A \& B respectivley at time t.

At each time, the person will select the choice of A or B is random. Given below the distribution of choice for each group

Group U_{1}
Choice at $\mathrm{t}= \begin{cases}A & \text { with probability } 1-\alpha \\ B & \text { with probability } \alpha\end{cases}$
Where $\alpha=\{\chi /(\chi+\lambda)\}$ and χ and λ are the prices of the two products.
Group U_{2}
Choice at $\mathrm{t}= \begin{cases}A & \text { with probability } 1-\beta \\ B & \text { with probability } \beta\end{cases}$
Where $\beta=\{\theta /(\omega+\theta)\}$ and ω and θ are the qualities of the two products
Group U_{3}
Choice at $\mathrm{t}= \begin{cases}A & \text { with probability } X_{a t} /\left(X_{a 0}+X_{b 0}+t\right) \\ B & \text { with probability } X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)\end{cases}$
Where $X_{a t}$ and $X_{b t}$ are the entrant's and incumbent's installed bases at time t
Let Z be unconditional choice at t . It will be a mixture of three groups and can take two values A and B. Using the law of total probability, we can write

$$
P[Z=B]=P\left(U_{1}\right) * P\left[\text { Choice } B \mid U_{1}\right]+P\left(U_{2}\right) * P\left[\text { Choice } B \mid U_{2}\right]+P\left(U_{3}\right) * P\left[\text { Choice } B \mid U_{3}\right]
$$

$$
P[Z=B]=p \alpha+q \beta+n * X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)
$$

Which implies, at unconditional level
Choice at $\mathrm{t}= \begin{cases}A & \text { with probability } 1-\left(p \alpha+q \beta+n * X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)\right) \\ B & \text { with probability } p \alpha+q \beta+n * X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)\end{cases}$
We can see that $P[Z=B]$ is a linear function of α, β, and $X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)$. We can consider the unconditional choice at t as an additive model.

Multiplicative Consumer Choice Model

In this model we use multiplicative structure of group level probabilities to determine the choice.
At unconditional level,
Choice at $\mathrm{t}= \begin{cases}A & \text { with probability } \alpha^{p} \beta^{q}\left[X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)\right]^{n} \\ B & \text { with probability } 1-\alpha^{p} \beta^{q}\left[X_{b t} /\left(X_{a 0}+X_{b 0}+t\right)\right]^{n}\end{cases}$
Comparison of Additive and Multiplicative Model

Multiplicative Choice Model		Additive Choice Model	
η_{q} and η_{p} for incumbent displacement in typical markets			
	Limiting case for infinite population Incumbent dominates Entrant dominates		Limiting case for infinite population Incumbent dominates Entrant dominates

Multiplicative Choice Model		Additive Choice Model	
Effect of seeding on η_{q} and η_{p} for incumbent displacement in typical markets			
	Limiting case for infinite population Incumbent dominates Entrant dominates Entrant dominates at 3% seeding*		\qquad Limiting case for infinite population Incumbent dominates Entrant dominates Entrant dominates at 3% seeding ${ }^{\star}$

