APPENDIX
A.1l. Connection between U-Index and Area Under the ROC Curve

Let F(g), F,(¢) and Fj(g) denote the c.d.fof ordered genotype g, ge{g,,...., g }in the entire
populations, diseased population and non-diseased population, respectively, so that
F)=P(G=<g); F,@)=P(G<g|D)sand Fyg)=P(G<g| D)

A classification rule can be formed by using a particular multi-locus genotype g as threshold:
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The ROC curve can then be represented by a map: f: # — f(#), so that
t,=1=P(Y,=0|D)=1-F;(g); and f(#,)=P(Y,=1|D)=1-Fj(g).
On the other hand, the predictiveness curve can be represented by a map: r: g —r(g), so that
g ="F(g); and r(g)=P(D] )
Let F'(g)and FJ(g) be the p.d.f of ordered genotype g in the diseased and non-disease

populations, respectively, we would have
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It follows then:
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Now we aim to express U = ZJ.O Ly (r(y)-r(x))dxdy in the form of f(.). First, let

x=p(l=fe)+(1-p)(1-1,)

=p0=fE )+A=p)(1-s,)
It follows that

dx__ PN
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Since f(0)=0 and f(1)=1, we know
x=1<:>z‘g=0
X=0<Z>l‘g=1,

It follows then

U=2[ [ ¢0)ree)sdy
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=2[ F©)pl-p)(1=5)+ p1= f)ds =2 [(1=p)+ ./ (5)]ds
=2p(1-p)[ [F'6)= (5 =1+ f(O)ds

In addition, because J: f'(5)ds =1 and .[01 sf'(s)ds = sf (), —J: f(8)ds , the above equation can be

simplified as

U=2p(1-p)[2[ f(s)ds=1]=2p(1-p)2AUC, ~1)



A.2. Connection between U-Index and Area Under the Lorenze Curve
We first show the connection between area under the ROC curve (_A4UC) ) and the area under the

Lorenze Cutve (_AUC, ).
1 ptpo
AUC, - [ [ r)ddy

=[1-p+prnas[ iy
=[ - f@I - p+ o 5)1ds
=(1-p)(1=[ f@yde)+p[ f@dsi—p[ f&)G)ds

=(1-p)(1~AUC)+ p=p|| ) ©)ds
Since J.: FO')ds = fO)6) | —J‘: S ()ds and F(1)=1, f(0)=0, we have
AUC, = (1—p)(1—AUCR)+%p

Further from U =2p(1- p)(2AUC, —1), it follows

U=2p(05-AUC, )



A.3. Connection between U-Index and two-sample U-Statistics

The U-Index can be estimated as

U=2 Z DWW (1) =2 Z Db —1)s

1<k<k'<K 1<k<k'<K

where p, and r, are calculated from P(G, | D)and P(G, | D). Asa result, we write U-Index as:
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It follows:
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where I, is an indicator function. Further, based on estimator
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P(g, | D)=~22 and P(g, | D)=—"2

1y "y

we can show that the U-Index is equivalent to a two-sample U-Statistic.
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where G, is the genotype of the /-th subject in diseased population; G is the genotype of the j-th

subject in non-diseased population. The kernel function has the following form:

1 r(G)>r(G))
#G,G)=1 0 r(G)=rG))
-1 (G,;)<r(G))
Further denote € = E(¢#(G;,G,)) and 6, = E(U)=2p(1— p)O. We can estimate the variance of
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where z-1,1 = Vdi"<¢<Gl., G;‘ )) > z-1,0 = ooy (¢(Gz) G/‘ ); ¢(Gi/’ G/' )) and To,l =cov (¢<Gl) G/' ); ¢(G;"J G_/‘ )) .

To obtain the asymptotic disttibution of U , we can use Hajek projection to project U -6}, onto
the space of the summation forms Z;/y(GZ.) where the CLT can be applied. The Hajek projection

U of U-86, is,
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Where bl,() (Gl) = E(¢(Gl’ G/) - 0 | Gl) and b())l (G/) = E(¢(GZ; G/) - 0 | G/) . We can then Calculate

the variance of U as
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We canwrite U—@), as a summation of the projection term U and the remaining term R, i.e.

U-6, = U+R. The asymptotic normality of U —@,,is then established by showing is U

asymptotically normal and R is asymptotically negligible. Assuming 7 = 7,, + ng and LINENG ,
n

we can apply CLT to U and show that
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With the fact that E(U)=0, E(R)=0and E(UR)=0,we know
E(nR? ) = nVar(U —6)—nVar(U) =0

Thus, \/;R%O . With Slusky theorem, it follows that
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