
APPENDIX 

A.1. Connection between U-Index and Area Under the ROC Curve 

Let ( )F g , ( )DF g  and ( )
D
F g  denote the c.d.f of ordered genotype g , 

1 Kg {g ,....., g } in the entire 

populations, diseased population and non-diseased population, respectively, so that  

( ) ( )F g P G g  ; ( ) ( )DF g P G g|D  ; and ( ) ( )
D
F g P G g|D   

A classification rule can be formed by using a particular multi-locus genotype g  as threshold:  
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The ROC curve can then be represented by a map:  ( )f : t f t , so that  

1 ( 0 ) 1 ( )g g D
ˆt P Y |D F g     ; and ( ) ( 1 ) 1 ( )g g Df t P Y |D F g    . 

On the other hand, the predictiveness curve can be represented by a map:  ( )r : q r q , so that 

( )q F g ; and ( ) ( )r q P D| g  

Let ( )F g and ( )
D
F g  be the p.d.f of ordered genotype g  in the diseased and non-disease 

populations, respectively, we would have  
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It follows then:   

( ) ( ) (1 ) ( ) (1 ( )) (1 )(1 )D g gD
q F g F g F g f t t             
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Now we aim to express 
1
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2 ( ( )- ( ))

y

U r y r x dxdy    in the form of ( )f . . First, let  

(1 ( )) (1 )(1 )g gx f t t       

(1 ( )) (1 )(1 )g gy f s s       

It follows that  

(1 ) ( )g
g

dx
f t

dt
       

Since (0) 0f   and (1) 1f  , we know 

1 0gx t    

0 1gx t   . 

It follows then  
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In addition, because 
1

0
( ) 1f s ds   and 

1 1
1
0

0 0
( ) ( )sf s ds sf ( s )| f s ds    , the above equation can be 

simplified as  
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A.2. Connection between U-Index and Area Under the Lorenze Curve 

We first show the connection between area under the ROC curve (
RAUC ) and the area under the 

Lorenze Curve (
LAUC ).  
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Since 
1 1

1
0

0 0
( ) ( ) ( ) ( ) ( ) ( )f s f s ds f s f s | f s f s ds     and (1) 1f   , (0) 0f  , we have 
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Further from 2 (1 )(2 1)RU AUC    , it follows 

2 (0.5 )LU AUC   

 

 

 

 

 

 

 

 

 



 

 

A.3. Connection between U-Index and two-sample U-Statistics 

The U-Index can be estimated as 
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    ; 

where 
kp  and 

kr  are calculated from ( )kP G |D and ( )kP G |D . As a result, we write U-Index as:  
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It follows: 
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   ; 

where {.}I is an indicator function. Further, based on estimator  
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we can show that the U-Index is equivalent to a two-sample U-Statistic.  
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where 
iG  is the genotype of the i-th subject in diseased population; jG  is the genotype of the j-th 

subject in non-diseased population. The kernel function has the following form: 
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Further denote ( ( ))i jE G ,G   and ( ) 2 (1 )U EU      . We can estimate the variance of  
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; 

where 1 1 ( ( )), i jVar G ,G  , 1 0 ( ( ) ( )), i j i jcov G ,G , G ,G     and 0 1 ( ( ) ( )), i j i jcov G ,G , G ,G    . 

 

To obtain the asymptotic distribution of U , we can use Hajek projection to project UU   onto 

the space of the summation forms 
1
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n

ii
h G

  where the CLT can be applied. The Hajek projection 

U of UU   is, 
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; 

where 1 0( ) ( ( ) ), i i j ih G E G ,G |G    and 0 1( ) ( ( ) ), j i j jh G E G ,G |G   . We can then calculate 

the variance of U as  
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We can write 
UU   as a summation of the projection term U and the remaining term R , i.e. 

UU U R   . The asymptotic normality of 
UU  is then established by showing is U

asymptotically normal and R  is asymptotically negligible. Assuming 
D D

n n n   and Dn

n
 , 

we can apply CLT to U  and show that  
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With the fact that ( ) 0 ( ) 0E U ,E R  and ( ) 0E UR  , we know  

2 ( ) ( ) 0E( nR ) nVar U nVar U     

Thus, 0pnR . With Slusky theorem, it follows that 
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