APPENDIX

A.1. Connection between U-Index and Area Under the ROC Curve

Let $F(g), F_{D}(g)$ and $F_{\bar{D}}(g)$ denote the c.d.f of ordered genotype $g, g \in\left\{g_{1}, \ldots . ., g_{K}\right\}$ in the entire populations, diseased population and non-diseased population, respectively, so that

$$
F(g)=P(G \leq g) ; F_{D}(g)=P(G \leq g \mid D) ; \text { and } F_{\bar{D}}(g)=P(G \leq g \mid \bar{D})
$$

A classification rule can be formed by using a particular multi-locus genotype g as threshold:

$$
\hat{Y}_{G}= \begin{cases}1 & r_{G}>r_{g} \\ 0 & r_{G} \leq r_{g}\end{cases}
$$

The ROC curve can then be represented by a map: $f: t \rightarrow f(t)$, so that

$$
t_{g}=1-P\left(\hat{Y}_{g}=0 \mid \bar{D}\right)=1-F_{\bar{D}}(g) ; \text { and } f\left(t_{g}\right)=P\left(Y_{g}=1 \mid D\right)=1-F_{D}(g) .
$$

On the other hand, the predictiveness curve can be represented by a map: $r: q \rightarrow r(q)$, so that

$$
q=F(g) ; \text { and } r(q)=P(D \mid g)
$$

Let $F^{\prime}(g)$ and $F_{\bar{D}}^{\prime}(g)$ be the p.d.f of ordered genotype g in the diseased and non-disease populations, respectively, we would have

$$
f^{\prime}\left(t_{g}\right)=\frac{d f\left(t_{g}\right)}{d t_{g}}=\frac{F_{D}^{\prime}(g)}{F_{\bar{D}}^{\prime}(g)} .
$$

It follows then:

$$
\begin{aligned}
& q=F(g)=\rho F_{D}(g)+(1-\rho) F_{\bar{D}}(g)=\rho\left(1-f\left(t_{g}\right)\right)+(1-\rho)\left(1-t_{g}\right) \\
& r(q)=P(D \mid g) \\
&=\frac{P(g \mid D) P(D)}{P(g \mid D) P(D)+P(g \mid \bar{D}) P(\bar{D})} \\
&=\frac{F_{D}^{\prime}(g) \rho}{F_{D}^{\prime}(g) \rho+F_{\bar{D}}^{\prime}(g)(1-\rho)} \\
&=\frac{f^{\prime}\left(t_{g}\right) \rho}{f^{\prime}\left(t_{g}\right) \rho+(1-\rho)}
\end{aligned}
$$

Now we aim to express $U=2 \int_{0}^{1} \int_{0}^{y}(r(y)-r(x)) d x d y$ in the form of $f($.$) . First, let$

$$
\begin{aligned}
& x=\rho\left(1-f\left(t_{g}\right)\right)+(1-\rho)\left(1-t_{g}\right) \\
& y=\rho\left(1-f\left(s_{g}\right)\right)+(1-\rho)\left(1-s_{g}\right)
\end{aligned}
$$

It follows that

$$
\frac{d x}{d t_{g}}=-(1-\rho)-\rho f^{\prime}\left(t_{g}\right)
$$

Since $f(0)=0$ and $f(1)=1$, we know

$$
\begin{aligned}
& x=1 \Leftrightarrow t_{g}=0 \\
& x=0 \Leftrightarrow t_{g}=1 .
\end{aligned}
$$

It follows then

$$
\begin{aligned}
U & =2 \int_{0}^{1} \int_{0}^{y}(r(y)-r(x)) d x d y \\
& =2 \int_{0}^{1} \int_{0}^{s}\left(\frac{f^{\prime}(s) \rho}{f^{\prime}(s) \rho+(1-\rho)}-\frac{f^{\prime}(t) \rho}{f^{\prime}(t) \rho+(1-\rho)}\right)\left[(1-\rho)+\rho f^{\prime}(t)\right]\left[(1-\rho)+\rho f^{\prime}(s)\right] d t d s \\
& =2 \int_{0}^{1} f^{\prime}(s) \rho \int_{s}^{1}\left[(1-\rho)+\rho f^{\prime}(t)\right] d t d s-2 \int_{0}^{1}\left[(1-\rho)+\rho f^{\prime}(s)\right] \int_{s}^{1} f^{\prime}(t) \rho d t d s \\
& =2 \int_{0}^{1} f^{\prime}(s) \rho[(1-\rho)(1-s)+\rho(1-f(s))] d s-2 \int_{0}^{1}\left[(1-\rho)+\rho f^{\prime}(s)\right] d s \\
& =2 \rho(1-\rho) \int_{0}^{1}\left[f^{\prime}(s)-s f^{\prime}(s)-1+f(s)\right] d s
\end{aligned}
$$

In addition, because $\int_{0}^{1} f^{\prime}(s) d s=1$ and $\int_{0}^{1} s f^{\prime}(s) d s=\left.s f(s)\right|_{0} ^{1}-\int_{0}^{1} f(s) d s$, the above equation can be simplified as

$$
U=2 \rho(1-\rho)\left[2 \int_{0}^{1} f(s) d s-1\right]=2 \rho(1-\rho)\left(2 A U C_{\mathrm{R}}-1\right)
$$

A.2. Connection between U-Index and Area Under the Lorenze Curve

We first show the connection between area under the ROC curve ($A U C_{R}$) and the area under the Lorenze Curve $\left(A U C_{L}\right)$.

$$
\begin{aligned}
A U C_{L} & =\frac{1}{\rho} \int_{0}^{1} \int_{0}^{y} r(x) d x d y \\
& =\int_{0}^{1}\left[1-\rho+\rho f^{\prime}(s)\right] d s \int_{s}^{1} f^{\prime}(t) d t \\
& =\int_{0}^{1}[1-f(s)]\left[1-\rho+\rho f^{\prime}(s)\right] d s \\
& =(1-\rho)\left(1-\int_{0}^{1} f(s) d s\right)+\rho \int_{0}^{1} f^{\prime}(s) d s-\rho \int_{0}^{1} f(s) f^{\prime}(s) d s \\
& =(1-\rho)\left(1-A U C_{\mathrm{R}}\right)+\rho-\rho \int_{0}^{1} f(s) f^{\prime}(s) d s
\end{aligned}
$$

Since $\int_{0}^{1} f(s) f^{\prime}(s) d s=\left.f(s) f(s)\right|_{0} ^{1}-\int_{0}^{1} f^{\prime}(s) f(s) d s$ and $f(1)=1, f(0)=0$, we have

$$
A U C_{L}=(1-\rho)\left(1-A U C_{R}\right)+\frac{1}{2} \rho
$$

Further from $U=2 \rho(1-\rho)\left(2 A U C_{R}-1\right)$, it follows

$$
U=2 \rho\left(0.5-A U C_{L}\right)
$$

A.3. Connection between U-Index and two-sample U-Statistics

The U-Index can be estimated as

$$
U=2 \sum_{1 \leq k<k^{\prime} \leq K} p_{k} p_{k^{\prime}} \psi\left(r_{k}, r_{k^{\prime}}\right)=2 \sum_{1 \leq k<k^{\prime} \leq K} p_{k} p_{k^{\prime}}\left(r_{k}-r_{k^{\prime}}\right) ;
$$

where p_{k} and r_{k} are calculated from $P\left(G_{k} \mid D\right)$ and $P\left(G_{k} \mid \bar{D}\right)$. As a result, we write U-Index as:

$$
\begin{aligned}
U & =2 \sum_{k=1}^{K} \sum_{k^{\prime}=1}^{k} p_{k} p_{k^{\prime}}\left(r_{k}-r_{k^{\prime}}\right) \\
& =2 \sum_{k=1}^{K} P\left(g_{k}, D\right) \sum_{k^{\prime}=1}^{k} P\left(g_{k^{\prime}}\right)-2 \sum_{k=1}^{K} P\left(g_{k}\right) \sum_{k^{\prime}=1}^{k} P\left(g_{k^{\prime}}, D\right) \\
& =2 \sum_{k=1}^{K} \rho P\left(g_{k} \mid D\right) \sum_{k^{\prime}=1}^{k}\left[\rho P\left(g_{k^{\prime}} \mid D\right)+(1-\rho) P\left(g_{k^{\prime}} \mid \bar{D}\right)\right]-2 \sum_{k=1}^{K}\left[\rho P\left(g_{k} \mid D\right)+(1-\rho) P\left(g_{k} \mid \bar{D}\right)\right] \sum_{k^{\prime}=1}^{k} \rho P\left(g_{k^{\prime}} \mid D\right) \\
& =2 \rho(1-\rho)\left[\sum_{k=1}^{K} P\left(g_{k} \mid D\right) \sum_{k^{\prime}=1}^{k} P\left(g_{k^{\prime}} \mid \bar{D}\right)-\sum_{k=1}^{K} P\left(g_{k} \mid \bar{D}\right) \sum_{k^{\prime}=1}^{k} P\left(g_{k^{\prime}} \mid D\right)\right]
\end{aligned}
$$

It follows:

$$
U=2 \rho(1-\rho)\left[\sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} P\left(g_{k} \mid D\right) P\left(g_{k^{\prime}} \mid \bar{D}\right)\left(I_{\left\{k>k^{\prime}\right\}}-I_{\left\{k<k^{\prime}\right\}}\right)\right] ;
$$

where $I_{\{,\}}$is an indicator function. Further, based on estimator

$$
P\left(g_{k} \mid D\right)=\frac{n_{g k, D}}{n_{D}} \text { and } P\left(g_{k} \mid \bar{D}\right)=\frac{n_{g k, \bar{D}}}{n_{\bar{D}}}
$$

we can show that the U-Index is equivalent to a two-sample U-Statistic.

$$
\begin{aligned}
U & =2 \rho(1-\rho) \frac{1}{n_{D} n_{\bar{D}}}\left[\sum_{k=1}^{K} \sum_{k^{\prime}=1}^{K} n_{g k, D} n_{g k^{\prime}, \bar{D}}\left(I_{\left\{k>k^{\prime}\right\}}-I_{\left\{k<k^{\prime}\right\}}\right)\right] \\
& =2 \rho(1-\rho) \frac{1}{n_{D} n_{\bar{D}}} \sum_{i=1}^{n D} \sum_{j=1}^{n \bar{D}} \phi\left(G_{i}, G_{j}\right)
\end{aligned}
$$

where G_{i} is the genotype of the i-th subject in diseased population; G_{j} is the genotype of the j-th subject in non-diseased population. The kernel function has the following form:

$$
\phi\left(G_{i}, G_{j}\right)=\left\{\begin{array}{cl}
1 & r\left(G_{i}\right)>r\left(G_{j}\right) \\
0 & r\left(G_{i}\right)=r\left(G_{j}\right) \\
-1 & r\left(G_{i}\right)<r\left(G_{j}\right)
\end{array}\right.
$$

Further denote $\theta=E\left(\phi\left(G_{i}, G_{j}\right)\right)$ and $\theta_{U}=E(U)=2 \rho(1-\rho) \theta$. We can estimate the variance of

$$
\begin{aligned}
\operatorname{Var}\left(U-\theta_{U}\right) & =\frac{4 \rho^{2}(1-\rho)^{2}}{n_{D}^{2} n_{\bar{D}}^{2}} \operatorname{Var}\left[\sum_{i-1}^{n D} \sum_{j=1}^{n \bar{D}}\left(\phi\left(G_{i}-G_{j}\right)-\theta\right)\right] \\
& =\frac{4 \rho^{2}(1-\rho)^{2}}{n_{D}^{2} n_{\bar{D}}^{2}}\left[n_{D} n_{\bar{D}} \tau_{1,1}+n_{D} n_{\bar{D}}\left(n_{\bar{D}}-1\right) \tau_{1,0}+n_{D} n_{\bar{D}}\left(n_{D}-1\right) \tau_{0,1}\right]
\end{aligned}
$$

where $\tau_{1,1}=\operatorname{Var}\left(\phi\left(G_{i}, G_{j}\right)\right), \tau_{1,0}=\operatorname{cov}\left(\phi\left(G_{i}, G_{j}\right), \phi\left(G_{i}, G_{j^{\prime}}\right)\right)$ and $\tau_{0,1}=\operatorname{cov}\left(\phi\left(G_{i}, G_{j}\right), \phi\left(G_{i^{\prime}}, G_{j}\right)\right)$.

To obtain the asymptotic distribution of U, we can use Hajek projection to project $U-\theta_{U}$ onto the space of the summation forms $\sum_{i=1}^{n} h\left(G_{i}\right)$ where the CLT can be applied. The Hajek projection \tilde{U} of $U-\theta_{U}$ is,

$$
\begin{aligned}
\tilde{U} & =\sum_{i=1}^{n D} E\left(U-\theta_{U} \mid G_{i}\right)+\sum_{j=1}^{n \bar{D}} E\left(U-\theta_{U} \mid G_{j}\right) \\
& =\frac{2 \rho(1-\rho)}{n_{D}} \sum_{i=1}^{n D} h_{1,0}\left(G_{i}\right)+\frac{2 \rho(1-\rho)}{n_{\bar{D}}} \sum_{j=1}^{n \bar{D}} h_{0,1}\left(G_{j}\right) ;
\end{aligned}
$$

where $h_{1,0}\left(G_{i}\right)=E\left(\phi\left(G_{i}, G_{j}\right)-\theta \mid G_{i}\right)$ and $h_{0,1}\left(G_{j}\right)=E\left(\phi\left(G_{i}, G_{j}\right)-\theta \mid G_{j}\right)$. We can then calculate the variance of \tilde{U} as

$$
\begin{aligned}
\operatorname{Var}(\tilde{U})= & \frac{4 \rho^{2}(1-\rho)^{2}}{n_{D}} \operatorname{Var}\left(h_{1,0}\left(G_{i}\right)\right)+\frac{4 \rho^{2}(1-\rho)^{2}}{n_{\bar{D}}} \operatorname{Var}\left(h_{0,1}\left(G_{j}\right)\right) \\
& =4 \rho^{2}(1-\rho)^{2}\left[\frac{\tau_{1,0}}{n_{D}}+\frac{\tau_{0,1}}{n_{\bar{D}}}\right]
\end{aligned}
$$

We can write $U-\theta_{U}$ as a summation of the projection term U and the remaining term $\overline{\mathrm{R}}$, i.e. $U-\theta_{U}=\tilde{U}+\bar{R}$. The asymptotic normality of $U-\theta_{U}$ is then established by showing is \tilde{U} asymptotically normal and \bar{R} is asymptotically negligible. Assuming $n=n_{D}+n_{\bar{D}}$ and $\frac{n_{D}}{n} \rightarrow \lambda$, we can apply CLT to \tilde{U} and show that

$$
\sqrt{n} \tilde{U} \square N\left(0,4 \rho^{2}(1-\rho)^{2}\left[\frac{\tau_{1,0}}{\lambda}+\frac{\tau_{0,1}}{1-\lambda}\right]\right)
$$

With the fact that $E(\tilde{U})=0, E(\bar{R})=0$ and $E(\tilde{U} \bar{R})=0$, we know

$$
E\left(n \tilde{\mathrm{R}}^{2}\right)=n \operatorname{Var}(U-\theta)-n \operatorname{Var}(\tilde{U}) \rightarrow 0
$$

Thus, $\sqrt{n} \overline{\mathrm{R}} \xrightarrow{\mapsto} 0$. With Slusky theorem, it follows that

$$
\sqrt{n}(U-\theta) \square N\left(0,4 \rho^{2}(1-\rho)^{2}\left[\frac{\tau_{1,0}}{\lambda}+\frac{\tau_{0,1}}{1-\lambda}\right]\right)
$$

