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Supplementary Material 
 

1. 4-level gain system 

 
Figure S1. Schematic of the four-level gain medium. The pump is assumed to be homogeneous and emission is assumed to be an electric 

dipole transition with frequency ωa. The nonradiative decay processes between the ith and jth energy levels are described by the 1/τij decay 

rates. Ni is the population at level i. 

 
The gain material is homogeneously embedded in the dielectric host medium, which has relative permittivity εr,host = 9, and is 

modeled as a four-level quantum system14,15,18,19,21,S1, as shown in Fig. S1. The pumping takes place between the ground state 

(N0) and the third level (N3) via the pumping rate Rp, which is homogeneous, corresponding to electrical pumping as in typical 

semiconductor lasersS2. Emission takes place between the second level (N2) and the first level (N1), which are called the upper 

and lower lasing levels, respectively. The rate equations that describe our model are: 
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where the gain-induced polarization density is given by: 
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and σa is the coupling strength of Pa to the electric field and ΔN = N2 − N1 is the population difference that drives the 

polarization. Depending on the sign of ΔN, energy can be transferred from the fields to the medium (i.e. absorption for ΔN < 0) 

or from the medium to the fields (i.e. amplification for ΔN > 0). The latter case refers to what is widely known as ‘population 

inversion’ and is a prerequisite for a material to provide gain. 



-2- 

 

    Depending on the experiment to be simulated, the pump can be either pulsed or constant and this is reflected in the evolution 

of populations over time; for pulsed pump (Rp = Rp(t) with max(Rp(t)) = Rp0) the populations are initially redistributed, but then 

relax to their initial condition (Fig. S2a), while for constant pump (Rp = const.) they reach a steady state (Fig. S2b). The pump 

conditions in Fig. 2 have been chosen in accordance with the discussion in Section 4, i.e. for the constant pump Rp = 3×108s-1 

and for the pulsed pump Rp0 = 3×1011s-1 and τpump = 0.15 ps. The constant pump reaches a steady state after approximately 200 

ps, which is the gain used in the examples of Fig.4-6. This amount of gain is achieved with the pulsed pump, approximately 9 

ps after excitation, as is shown in Fig. S2a, as the populations N2 and N1 become equal to their CW equivalents in (b). 

  

 
Figure S2. Evolution of populations for our gain system when the pump is (a) pulsed with 0.15 ps duration, Rp0 = 1×1011 s-1 and (b) constant 

with Rp = 3×108 s-1. The red dotted lines denote the asymptotic limit of the populations, which have been normalized to the total population 

Ntotal = 5 × 1023. For the considered pump conditions in (a), 9 ps after excitation, the populations N2 and N1 become equal to their CW 

equivalents in (b). 

 

    For a certain constant pump rate Rp, the population difference ΔN=N2-N1 provided by a certain gain material can be directly 

calculated from Eq. (S1) with setting the fields and the derivatives to zero, to account for t→∞. Then we obtain the result23: 
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For another gain material with the exact same parameters, but with different total population 
*  total totalN C N , as discussed in 

the main paper (section: Observable regimes for different gain materials), to achieve the same population inversion (gain), a 

different pump rate 
*
pR  has to be applied, as already shown in Fig. 10. To relate the two pump rates, Eq. (S3) can be applied for 

both systems and equating ΔN for both cases leads to: 
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For C<1, the denominator of the right side of Eq. (S4) can become negative, which is an unphysical solution. This indicates that 

the same population inversion ΔΝ cannot be achieved with the new gain material. In our examples, this occurs for the cases 

with C = 0.15 and C = 0.06, which are the two cases shown to have inadequate gain to reach lasing. 
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2. FDTD self-consistent calculations 

 

The gain material is characterized by the lifetimes τ32 = 0.05 ps, τ21 = 80 ps and τ10 = 0.05 ps and the coupling constant is σα = 

10-4 C2/kg (τ30 is assumed for simplicity to be very large, i.e. the nonradiative N3→N0 transition to be absent). The gain medium 

is assumed to have a Lorentzian response which is homogeneously broadened with linewidth Γα = 2π  20  1012 rad/s and 

emission frequency ωα = 2π  200  1012 rad/s. To avoid effects from frequency mismatch between the gain emission and the 

SRR resonance, we tune ωα to coincide with the resonant frequency of the SRR-gain composite system. For example, for the 

strongly coupled case (δz = 0 nm) we set ωα = 2π  184 1012 rad/s and for the uncoupled case (δz = 80 nm) we set ωα = 2π  

199 1012 rad/s. Similarly, we repeat this tuning for each δz separation. 

    In our simulations the total electron density is considered to be N0(t=0) = N0(t) + N1(t) + N2(t) + N3(t) = C×5×1023 m-3 and the 

initial condition is that all electrons are in the ground state and all electric, magnetic and polarization fields are zero. For the 

major part of the paper we have used C = 1, while for the simulations presented in section “Observable regimes for different 

gain materials”, we have set C to 10, 0.5, 0.15 and 0.06 to account for gain materials that provide different amounts of 

maximum gain. For the pump-probe simulations we first pump the system with a pulsed pump and then probe it with a weak 

Gaussian pulse and repeat for different pump-probe delays (for the CW pump simulations the pump-probe delay is irrelevant, 

because the gain is constant). For the lasing simulations (Fig. 9) we insert noise in the system, then pump with a CW pump and 

do not send a probe pulse, but monitor the outgoing waves instead and this procedure is repeated for several pump rates. In all 

cases, the system of the Maxwell equations coupled with the atomic rate equations is self-consistently solved in a Finite-

Difference Time-Domain (FDTD) schemeS3 using an approach similar to the one outlined in15. 

 

3. Retrieval of effective parameters 

 

The retrieval of effective metamaterial parameters is a very popular technique30,31, according to which the effective refractive 

index n and impedance z are calculated from the reflection and transmission coefficients, r and t respectively. To do so, it is 

assumed that the metamaterial is subwavelength enough to be homogenizable and it is then replaced by a homogeneous slab of 

thickness d with the respective properties n and z that need to be calculated. Then, the effective permittivity and permeability of 

the metamaterial are simply expressed as εr = n/z and μr = nz. The inversion of r and t, however, introduces ambiguity both in 

the sign of z and the value of n. The sign of z can be determined by causality arguments, but lifting the ambiguity in n is a more 

demanding task, as multi-valued functions are involved. 

    The expression for n can be written as    n f    where        ln 2
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and Arg[g] is the principal argument of g defined to lie in the interval (-π,π]. It is evident 

that while g(ω) is a single-valued function of ω that is directly calculated from r and t, f(ω) (and hence n) consists of a multi-

valued real part and a single-valued imaginary part and is therefore a multi-valued function of ω. The ambiguity in   Im f   

can be lifted again by causality arguments (e.g. if the material is passive, then   Im 0f   ) and hence, the only ambiguity 

left is with the multiple branches of   Re f  , i.e. the multiple branches of   Re n  . 

    It is crucial to note that   Arg g   is wrapped in the interval  ,   by definition. This renders   Re n   a piecewise 

continuous function of ω for each q, i.e. a family of piecewise continuous functions of ω. From this point on, the correct 

solution of   Re n   can be obtained via two approaches: 

1) The solution can be built piece by piece by choosing the correct part of each branch30,33. 

2)   Arg g  can be unwrapped, thus rendering   Re n   a family of continuous curves. Then, the solution is obtained by 

identifying the appropriate continuous curve, i.e. the appropriate q31. 

 

    With our modified retrieval technique, we manage to lift this ambiguity. Differentiation of f(ω) gives: 
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where  
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It is obvious that not only is 2πq now removed, but also the unknown function f(ω)  has given its place to the derivative 

 f 






, which can be calculated directly from g(ω) (see Eq. (S6)). Consequently, the solution of Eq. (S5) gives the exact value 

of n(ω). 

    To cast the solution in numerical form, let us assume a set of 1N  frequency points  i   0,1,2,...,i N , i.e. 

 0 1 2, , ,..., N     , at which the reflection and transmission coefficients are measured. At these frequency points 

 0 1 2, , ,..., Nr r r r r  and  0 1 2, , ,..., Nt t t t t , where  i ir r   and  i it t  . All quantities involved in the calculations are 

also discretized and consequently  0 1 2, , ,..., Ng g g g g ,  0 1 2, , ,..., Nf f f f f  and  0 1 2, , ,..., Nn n n n n , where 

 i ig g  ,  i if f   and  i in n  . At a frequency point i = m  0  m N , the discretized impedance is expressed as: 
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To calculate the discretized n, equation Eq. (S5) is expressed as: 
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The recursive relations Eq. (S9a) and Eq. (S9b) are equivalent and express the new n in terms of the old, either with increasing 

frequency Eq. (S9a) or decreasing Eq. (S9b). All fi and ωi are known, hence Eq. (S9) is easily solved if recursion starts at a 

frequency 
,i start

  where n is known. The problem of calculating n is hence transferred to the correct determination of a starting 

value 
,i start

n . 

 
Figure S3. Schematic of numerical implementation of the retrieval algorithm 

 

    With a simple inspection of Eq. (S5), it is obvious that if the derivative on the left hand side vanishes, i.e. if the refractive 

index is constant around a certain frequency range, this value can be directly calculated as    f
n
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use Eq. (S9a) or Eq. (S9b) with  
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From Eq. (S5) it is evident that if   n C , then
 


f

C



 and consequently 

 

0






 
 
 

f 




, where C is a constant. It is 

straightforward to show that if 
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sufficient). 

    To conclude, 
,i start

n  is unambiguously calculated directly from the data in hand in frequency areas that satisfy 
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. One could claim that these conditions are rather strict. Fortunately, most materials of interest exhibit a number 

of resonances, which die out at distant frequencies. There, these conditions are satisfied. 
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