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WEB APPENDIX 
 

W-A. FULL MODEL SPECIFICATION 

 

Notation 

i: user, i = 1,…,N;  t: time, t = 1,…,𝑇 ;   

k: latent class, k = 1,…,K;  j: advertising publisher, j = 1,...,J 

𝑦 : the number of visits an user i makes to the site at time t 

𝜙  : the probability of an user i inclass k of visiting the site once at time t 

𝜙  : the probability of an user i inclass k of visiting the site more than once at time t 

AdStock : AdStock for an user i at time t, the mean-centered log of geometrically-smoothed 

publisher exposures and each publisher’s differential effect. 

𝑥  : the geometrically-smoothed index of each publisher’s exposures (𝜄  with a carryover 

parameter𝛿 ∈ [0,1].  

𝑧  : the standardized number of days that have elapsed since the last exposure at time t 

𝑣  : the mean-centered binary variable that indicates whether a user has visited the site within a 

week before time t 

𝑤  : the standardized variables for a user i’s browsing behavior such as frequency of web usage, 

breadth of different websites, and the tendency to visit media, financial, and e-commerce sites. 

𝐶 : a N-vector that indicates class allocation, with each element taking on a value of {1, … , 𝐾} 

 

Full model 

(𝑦 |𝐶 = 𝑘, 𝜙 , 𝜙 , 𝜇 , 𝜏 )  = 

(1 − 𝜙 − 𝜙 ) ( )𝜙 ( ) [𝜙 𝑝 (𝑦 |𝜇 , τ ]] ( ) 

𝜙 =
∑ ( )

 for 𝑞 ∈ {0,1,2} and  

log(𝜇 ) = 𝑉 + 𝑢  where 

𝑉 = 𝛼 + 𝛼 𝐴 + 𝛼 𝐴 + 𝛼 𝑧 + 𝛼 𝑧 + 𝛼 𝑣 + 𝛼 𝑣 𝐴 + 𝛼 𝑣 𝑧  

for   𝑞 ∈ {1, 2, 3} 

𝑢 |𝐶 ~𝑁 (0, Σ ) 

AdStock  =  log 𝜆 𝑥 + 1 − �̅�, 
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𝑥 = (1 − 𝛿)𝜄 + 𝛿 ∙ 𝑥 𝐶  ~ 𝐶𝑎𝑡(𝑚 , … , 𝑚 ) 

𝑚 =
exp (𝑤 𝛾 )

∑ exp (𝑤 𝛾 )
 

 

Likelihood 

𝐿(𝑦|{𝛼 }, {Σ }, {𝑢 }, 𝜆 , 𝐶, {𝛾 }) ∝ { 𝑓(𝑚 |𝛾 , 𝑤 ) [ 𝑓 𝑦 𝛼 , 𝜆 , 𝑢 , τ 𝑓(𝑢 |Σ )]} 

Priors 

𝛼 ~𝑁(𝜇 = 0, Λ = 100I ) 

𝛼 ~𝑁(𝜇 = 0, Λ = 100I )where r is the number of parameters 

𝜏 ~𝐼𝐺(𝑛 = 0.1, 𝛿 = 0.1) 

𝜋(Σ )~𝐼𝑊(𝜈 = 3, 𝐷 = 𝐼 ) 

𝛾~𝑁(𝜇 = 0, 𝑉 = 100𝐼 ), where w is the number of parameters in browsing behavior 

λ ~Gamma(shape =
1

𝜃
, scale =

1

𝜃
) 

𝜃 ~ 𝑈𝑛𝑖𝑓 0,∞  

 

W-B: TREATMENT FOR MISSING ONLINE BEHAVIOR VARIABLES 

Since the adverting agency manages two datasets (ads-focused impression dataset and 

publishers-based ad network dataset) separately, only when users who were exposed to target ads and 

visited the target advertiser’s site (when it is part of the ad network), their unique identifiers are 

synchronized and allow us to observe their behaviors in both datasets. Thus, our dataset does not 

contain browsing behaviors (𝑤 ) for users who never visited the advertiser’s website during the 

observation window. Consider a set of non-visitors 𝑁 and a set of visitors, 𝐸. While the probability 

that visitor i for 𝑖 ∈ 𝐸 belongs to class k can be estimated using the equation for 𝑚 , one must make 

an inference of the membership probability for non-visitors 𝑖′for 𝑖′ ∈ 𝑁 because of the missing 𝑤 . 

Because there is no evidence to suggest that general online browsing propensities (e.g., online usage 

frequency, interests in finance, e-commerce, and media, etc.) differ between visitors and non-visitors, 

the weighted average membership probabilities for each class, estimated from visitors, are applied to 
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non-visitors as well (note that this does not impose equal proportional apportioning into latent classes 

for the non-visitors vs. visitors). In other words, the estimated coefficient of the constant term 𝛾  for 

visitors, 𝑖 ∈ 𝐸, 𝛾 , is used for the baseline probabilities for each segment for : 

𝑚 ′ = 𝑚 =
 ( )

∑  ( )
. 

 
W-C. MODEL ESTIMATION 

i. Metropolis-Hastings (MH) algorithm to update 𝛄: ∶ 𝛄|𝐂, 𝛍𝛄, 𝑽𝜸 

 Assuming that γ = 0 for identification, the full conditional w-dimensional vector parameter γ (k 

= 1,...,K) is as follows: 

π γ 𝐶 = 𝑘, 𝜇 , 𝑉 ∝ 𝑚
( )

𝜋(𝛾 ) =
exp(𝑤 𝛾 )

∑ exp 𝑤 𝛾
𝑁(𝛾 |𝜇 = 0, 𝑉 = 100𝐼 )

:

 

Since the posterior distribution does not have a closed form, we use a random-walk MH algorithm 

with a multivariate-t distribution: γ = 𝛾 + 𝜅  where κ ~𝑀𝑉𝑡(0, 𝑠 𝑇 ), where T  is the empirical 

covariance from an extended burn-in period (Haario et al. 2005) so that the proposal density follows 

the approximate posterior covariance. The parameter s  is adjusted such that the rejection ratio 

belongs to .5~.7.  

ii. Updating 𝒎𝒊 and 𝑪𝒊 

For i = 1,...,N, draw C ∈ {1, … , 𝐾} with probability 𝑚 such that 

Pr(C = 𝑘) =
𝑚 ∏ 𝑓 𝑦 𝛼 , 𝜆 , 𝑢 𝑓(𝑢 |Σ )

∑ 𝑚 ∏ 𝑓 𝑦 𝛼 , 𝜆 , 𝑢 𝑓(𝑢 |Σ )
 

 Missing browsing behavior data for non-visitors. The dataset of our study does not contain 

browsing behaviors (w ) for users who never visited the advertiser’s website during the observation 

periods. Let’s call a set of non-visitors and a set of visitors . Although the probability that 

visitor i for 𝑖 ∈ E belongs to the class k can be estimated by the equation for 𝑚, we must make an 

inference regarding the probability that the non-visitor 𝑖′ for 𝑖′ ∈ N belongs to the class k because of 

the missing w
′
. To overcome the missing data problem, we assume that missing browsing behaviors 

are independent from class allocation, applying baseline probability estimated from visitors to non-

visitors (Rubin 1976). In other words, the estimated coefficient of the constant term 𝛾  for 

visitors,𝑖 ∈ E, 𝛾 , is used for the baseline probabilities for each segment for 𝑖′ ∈ N: 

'i N

N E
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m ′ = 𝑚 =
exp (𝛾 )

∑ exp (𝛾 )
 

iii. MH algorithm to update 𝜶𝒌: 𝜶𝒌|𝐂𝒊 = 𝒌, 𝝁𝜶, 𝚲𝛂 

Let M = [1 𝐴𝑑𝑆𝑡𝑜𝑐𝑘 𝐴𝑑𝑆𝑡𝑜𝑐𝑘 𝑧 𝑧 𝑣 𝑣 𝐴 𝑣 𝑧 ] denote the T × 𝑟 submatrix of 

covariates for an user i such that C = 𝑘, α  denote a 2 × r coefficient matrix for the multinomial 

component with the first column corresponding to one visit and the second column to more than one 

visit, and α  denote a r coefficient vector for the discretized lognormal component. Note that 

simultaneous updating α  and α  is possible while in our paper, we sequentially update them for 

the better and more efficient mix. .  

π(α |𝐶 = 𝑘, 𝜇 , Λ ) ∝ Pr 𝑦 = 𝑞 𝛼 , 𝑢
( )

𝜋(𝛼 )

:

=
exp 𝑀 𝛼 + 𝑢

∑ exp(𝑀 𝛼 + 𝑢 )

( )

:

𝑁(𝛼 |𝜇 = 0, Λ

= 100𝐼 ) 

π(α |𝐶 = 𝑘, 𝜇 , Λ , 𝛕𝐤) ∝ [Pr(𝑦 = 𝑞|𝛼 , 𝑢 , 𝛕𝐤)] ( )𝜋(𝛼 )

:

= 𝑝 (𝑌 = 𝑦 |𝜇 , 𝜏 ) ( )

:

𝑁(𝛼 |𝜇 = 0, Λ = 100𝐼 ) 

 

Since the posterior distribution does not have a closed form, we use a random-walk MH algorithm 

with a multivariate-t jumping distribution: 

α
( )

= 𝛼
( )

+ 𝜅  where κ ~𝑀𝑉𝑡(0, 𝑠 𝑇 ) for both α  and α ,  

where parameters T  and s  are set up as in the estimation of γ .  

iv. MH algorithm to update 𝝉𝒌 

As τ  is defined in a positive domain, we use the lognormal distribution 𝐿𝑁(τ |𝜇 = 0, σ = 0.1) for 

its prior distribution, indicating its posterior distribution as below. 

π(τ |𝐶 = 𝑘, 𝜇 , Λ , α ) ∝ [Pr(𝑦 = 𝑞|𝛼 , 𝑢 , τ )] ( )𝜋(τ )

:

= 𝑝 (𝑌 = 𝑦 |𝜇 , 𝜏 ) ( )

:

𝐿𝑁(τ |𝜇 = 0, σ = 0.1) 

For proposal density, we use a random-walk algorithm with an exponential normal distribution.  

𝜏
( )

= exp (𝜏
( )

+ 𝑜 ) where 𝑜 ~𝑁(0,0.1) 
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v. MH algorithm to draw 𝒖𝒊𝒌 

𝜋(𝑢 |𝐶 = 𝑘, 𝑦 , 𝛼 , τ , 𝐴𝑑𝑆𝑡𝑜𝑐𝑘 ) ∝ 𝑓(𝑦 |𝐶 = 𝑘, 𝛼 , 𝑢 , τ , 𝐴𝑑𝑆𝑡𝑜𝑐𝑘 )𝑁(𝑢 |0, Σ ) 

For proposal density, we use a random-walk MH algorithm with a multivariate normal distribution 

with variance Σ : 

𝑢
( )

= 𝑢
( )

+ 𝜅  where 𝜅 ~𝑀𝑉𝑁(0, Σ ) 

vi. Gibbs sampling to update 𝚺𝒌 

𝜋(Σ |𝑢 )~𝐼𝑊 𝑛 + 𝜈 , 𝐷 + 𝑢
′

𝑢  

vii. MH algorithm to update the website random effects 𝝀𝒋 

The posterior distribution of 𝜆  (j = 1, ..., J) is as follows 

𝜋(𝜆 |𝑋, 𝑦, 𝛼 , 𝛽 , 𝑢 , 𝜏 , 𝑚 , 𝜃)

∝ 𝑓(𝑚 |𝛾 , 𝑤 ) 𝑓 𝑦 𝛼 , 𝜆 , 𝑢 , τ 𝑓(𝑢 |Σ ) 𝜋(𝜆 |𝜃) 

where the prior distribution 𝜋 𝜆 𝜃 =
/

𝜆 exp −  follows the gamma distribution with 

a mean of one and a variance of 𝜃. 

For the proposal density, we use an independence sampler with gamma distribution (Hahn, 2014), 

𝑔(𝜆
( )

|𝜆
( )

)~𝐺𝑎𝑚𝑚𝑎(𝜄,
( )

) where 𝜄 is the shape parameter and 
( )

is the scale parameter. 

viii. MH algorithm to update 𝜽 

A prior density for 𝜃 is assumed as a uniform distribution, Unif(0,∞), and the independent sampler 

with gamma distribution is used for the proposal density.  
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W-D. ROBUSTNESS CHECKS 

To ensure that claims regarding weariness do not hinge on particular modeling assumptions, 

we examine variants of the proposed model that turn off or hobble specific parts of it. Our initial set 

of checks focus on the lognormal portion of the count model. We first examine a binary model that 

distinguishes visits as 0 vs. 1-or-more; that is, the proposed model with the multinomial portion made 

binary, and with no discretized lognormal component. Results (Web Appendix, Table W-6 and 

Figure W-1) indicate that, for this model, four latent classes fit best. Classes 1 and 4 show mean 

contours consistent with response concavity (weariness), although, due to information loss (i.e., the 

number of visits), neither rises to the 95% contour concavity standard apparent for the full model. 

We note in passing that it is precisely this information – the number of individual visits – that is 

differentially important in determining eventual conversion, as pointed out by Moe and Fader (2004). 

Using the binary incidence DV precludes fit statistics from being compared to those from our best-

fitting model. We can, however, re-estimate our model with no covariates (i.e., just intercepts) in the 

discretized lognormal model, meaning a multinomial model separating 0 vs. 1 vs. 2+, which is nested 

in our model. Model fit statistics (Table W-7, for 3-, 4-, and the best-fitting 5-class model) show that 

removing covariates from the discretized lognormal portion (i.e., predicting distribution among the 

2+ visit observations) produces greatly inferior results, roughly 10% worse on LMD, DIC, elpd.waic, 

and elpd.isloo.  

We further checked whether the existence of weary groups hinges on particular model 

specifications (beyond the lognormal portion) or sample selection criteria; we do this in six ways. 

First, we find a distinct weary class even when imposing equal publisher effectiveness (𝜆 = 1; 

Figure W-2). Second, we re-estimate the model using the same AdStock specification (Eq. (7)) but 

with SAI in place of log(1 + SAI); this results (Figure W-3) in five classes, one of which displays 

strong weariness, but a dramatically poorer overall fit (roughly 15% in each of the four fit metrics). 

Third, we excluded outliers using different percentiles (i.e., 0.1%, 1%, 5%, vs. the 0.01% 
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previously); in each case, there was at least one class with size greater than 30% and over 95% weary 

contours. The last set of checks concerns the potential for so-called “activity bias” (Lewis and Reiley 

2014), where very active internet users are more likely to both receive a high number exposures and 

respond differently to advertising (compared with lighter users). This concern is addressed in two 

distinct ways: (a) we constructed a daily browsing activity variable (i.e., the number of daily 

webpages visited), using it as a control covariate; and (b) constructed two additional sample datasets 

of 12,000 users based on overall browsing activities, specifically, the 2nd and 4th quintiles of users’ 

total number of webpages visited). As before, models run in all these cases perfectly replicate our 

substantive results: a single class with significant, substantial weariness (Figure W-4).1 In short, 

weariness was robust to all critical sample selection criteria and model constructs, save one: response 

homogeneity, which we turn to next.   

  

                                                 
1 Detailed estimation results for all these models are available from the authors. 
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Table W-1: Simulation Study Based on the Actual Data Set 

(Burn-in 5,000/10,000 draws)  

Parameters 
True 
value Median 2.5% 97.5% Parameters 

True 
value Median 2.5% 97.5% 

𝛼𝑘=1,𝑞=1 -1.21 -1.12 -1.37 -0.92 𝛼𝑘=1,𝑞=3 -0.071 -0.053 -0.071 -0.013 
-1.11 -1.06 -1.2 -0.92 2.176 2.177 2.17 2.182 

-0.8 -0.67 -0.8 -0.55 2.483 2.483 2.474 2.49 
1.24 1.17 0.96 1.41 0.92 0.877 0.822 0.91 
0.32 0.37 0.14 0.57 -0.226 -0.205 -0.22 -0.181 

-0.92 -0.85 -1.07 -0.6 0.71 0.694 0.672 0.71 

𝛼𝑘=1,𝑞=2 -1.04 -1.05 -1.19 -0.93 𝛼𝑘=2,𝑞=3 -1.036 -1.037 -1.043 -1.031 
2.05 2.14 2 2.28 -0.936 -0.933 -0.94 -0.927 

2.2 2.03 1.72 2.27 -0.074 -0.087 -0.099 -0.073 

1.19 1.25 1.03 1.48 0.396 0.378 0.353 0.394 
-1.52 -1.35 -1.72 -1.01 -0.504 -0.541 -0.565 -0.517 

1.7 1.75 1.57 1.88 -1.986 -1.953 -1.977 -1.93 

𝛼𝑘=2,𝑞=1 -2.29 -2.21 -2.35 -2.07 𝛼𝑘=3,𝑞=3 -0.204 -0.243 -0.261 -0.225 
-1.54 -1.37 -1.67 -1.03 -0.631 -0.588 -0.614 -0.563 
-5.05 -4.83 -5.24 -4.45 0.535 0.493 0.469 0.516 
0.83 0.74 0.6 0.88 -0.071 -0.053 -0.071 -0.013 

-2.16 -2.08 -2.19 -1.98 2.176 2.177 2.17 2.182 
-1.32 -1.29 -1.38 -1.18 2.483 2.483 2.474 2.49 

𝛼𝑘=2,𝑞=2 0.23 0.31 0.14 0.48      

-0.87 -0.86 -0.95 -0.78 𝜏𝑘=1 0.01 0.018 0.017 0.021 

-1.23 -1.26 -1.65 -0.92 𝜏𝑘=2 0.01 0.019 0.018 0.021 

1.6 1.45 1.32 1.59 𝜏𝑘=3 0.01 0.101 0.097 0.107 
1.33 1.28 1.15 1.46      

-1.57 -1.4 -1.7 -1.09 𝛾
𝑘=2

 -1.3 -1.4 -1.8 -1.2 

𝛼𝑘=3,𝑞=1 -3.05 -2.98 -3.44 -2.55  -4 -4.4 -5 -3.9 
1.18 1.12 0.92 1.28  1.8 2 1.6 2.3 

-0.21 -0.25 -0.36 -0.14 𝛾
𝑘=3

 -1.5 -1.1 -1.4 -0.9 
-1.55 -1.55 -1.66 -1.42  2.9 2.4 2 2.7 
0.34 0.34 0.17 0.53  -1.7 -1.6 -1.8 -1.3 
0.34 0.32 0.21 0.43      

𝛼𝑘=3,𝑞=2 -1.21 -1.12 -1.37 -0.92 𝜃 1 0.69 1.21 0.42 
-1.11 -1.06 -1.2 -0.92      

-0.8 -0.67 -0.8 -0.55 𝜌(𝜆, 𝜆) 0.999    
1.24 1.17 0.96 1.41      

0.32 0.37 0.14 0.57      
-0.92 -0.85 -1.07 -0.6      
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TABLE W-2. T-tests for the Number of Impressions Before vs. After visits 

Total number of 
impressions before, and 

after, the first visit 

Number of impressions one 
week before, and after, the 

first visit 

Number of impressions 
6-8 days before, and 
after, the first visit 

Obs. 4,135 4,135 4,135 
MEAN Before 3.16 1.21 0.34 
MEAN After 1.95 0.88 0.22 
MEAN Diff 1.21 0.33 0.13 
Std. Err 0.08 0.27 0.02 
Std. Dev 5.26 1.73 1.03 
95% CI – lower  1.05 0.28 0.96 
             – upper 1.37 0.38 0.16 
p-value* 0.000 0.000 0.000 
*𝐻 : The total number of impressions before and after the first visit is the same (i.e., difference =0) 

 

TABLE W-3. Endogeneity Tests for Stratified Number of Impressions 

Control Treatment Obs. Mean Std. Err 95% CI p-value .05 Crit. Diff 

week 2: 
1 imp. 

week 3: no visit 1,307 0.33 0.03 0.27 0.39 0.14 0.12 
week 3: first visit 266 0.44 0.08 0.28 0.6  

week 2: 
2 imp. 

week 3: no visit 364 0.61 0.07 0.46 0.75 0.02 0.23 
week 3: first visit 40 1.18 0.25 0.67 1.68  

week 2: 
3 imp. 

week 3: no visit 59 3.2 0.39 2.42 3.98 0.27 0.22 
week 3: first visit 9 2 1.07 -0.47 4.46  

week 2: 
5 imp. 

week 3: no visit 29 2.59 0.6 1.36 3.81 0.63 0.24 
week 3: first visit 3 1.67 1.2 -3.5 6.84  

week 3: 
1 imp. 

week 4: no visit 1,815 0.38 0.02 0.34 0.42 0.91 0.40 
week 4: first visit 306 0.39 0.05 0.29 0.48  

week 3: 
2 imp. 

week 4: no visit 537 0.62 0.05 0.52 0.73 0.35 0.13 
week 4: first visit 70 0.77 0.16 0.44 1.1  

week 3: 
3 imp. 

week 4: no visit 204 1.08 0.13 0.83 1.33 0.37 0.20 
week 4: first visit 31 1.39 0.29 0.79 1.98  

week 3: 
4 imp. 

week 4: no visit 94 1.94 0.22 1.5 2.38 0.72 0.21 
week 4: first visit 11 2.18 0.62 0.81 3.55  

week 3: 
5 imp. 

week 4: no visit 45 2.04 0.3 1.43 2.66 0.76 0.30 
week 4: first visit 12 2.25 0.64 0.84 3.66  

week 4: 
1 imp. 

week 5: no visit 1,829 0.24 0.01 0.21 0.27 0.51 0.31 
week 5: first visit 355 0.26 0.04 0.18 0.34  

week 4: week 5: no visit 489 0.53 0.06 0.42 0.64 0.98 0.17 
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2 imp. week 5: first visit 85 0.53 0.11 0.3 0.75  

week 4: 
3 imp. 

week 5: no visit 241 0.81 0.08 0.65 0.98 0.32 0.19 
week 5: first visit 27 1.07 0.28 0.5 1.64  

week 4: 
4 imp. 

week 5: no visit 78 1.1 0.16 0.78 1.42 0.02 0.31 
week 5: first visit 12 2.25 0.54 1.07 3.43  

week 4: 
5 imp. 

week 5: no visit 40 1.6 0.27 1.05 2.15 0.42 0.40 
week 5: first visit 9 2.11 0.56 0.81 3.41  

week 5: 
1 imp. 

week 6: no visit 1,951 0.07 0.01 0.04 0.09 0.44 0.19 
week 6: first visit 405 0.04 0.01 0.02 0.06  

week 5: 
2 imp. 

week 6: no visit 676 0.12 0.02 0.08 0.16 0.29 0.36 
week 6: first visit 107 0.19 0.08 0.04 0.34  

week 5: 
3 imp. 

week 6: no visit 279 0.15 0.03 0.09 0.21 0.94 0.57 
week 6: first visit 51 0.16 0.06 0.03 0.29  

week 5: 
4 imp. 

week 6: no visit 121 0.29 0.06 0.17 0.41 0.18 0.59 
week 6: first visit 26 0.5 0.19 0.12 0.88  

week 5: 
5 imp. 

week 6: no visit 70 0.37 0.1 0.18 0.57 0.41 0.78 
week 6: first visit 12 0.17 0.17 -0.2 0.53  

week 6: 
1 imp. 

week 7: no visit 1,738 0.07 0.01 0.05 0.09 0.55 0.26 
week 7: first visit 379 0.08 0.03 0.03 0.14  

week 6: 
2 imp. 

week 7: no visit 537 0.26 0.07 0.12 0.39 0.79 0.15 
week 7: first visit 90 0.21 0.06 0.09 0.33  

week 6: 
3 imp. 

week 7: no visit 189 0.26 0.09 0.08 0.44 0.58 0.34 
week 7: first visit 30 0.13 0.06 0.004 0.26  

week 6: 
4 imp. 

week 7: no visit 90 0.48 0.16 0.15 0.8 0.83 0.40 
week 7: first visit 13 0.38 0.18 -0.01 0.78  

week 6: 
5 imp. 

week 7: no visit 33 0.24 0.12 0.01 0.48 0.98 1.68 
week 7: first visit 4 0.25 0.25 -0.55 1.05  
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TABLE W-4: MODEL FIT COMPARISONS 

Model epld 

Carryover 
(𝜹) Classes {𝝀𝒋} 𝑬(𝜽) LMD DIC WAIC IS-LOO 

10% K=1 Yes 0.50 -166020 329336 -176860 -180213 
    -166021 328608 -177016 -180418 
 K=3 Yes 0.87 -152522 286696 -163433 -166621 
    -152508 289103 -163920 -166805 

20% K=1 Yes 0.23 -165682 326851 -176615 -179916 
    -165718 327776 -176832 -180235 
 K=2 Yes 0.49 -141898 271173 -150154 -153956 
    -142362 276803 -152050 -156112 

30% K=1 Yes 0.96 -165637 327382 -176564 -179893 
    -165742 325415 -176560 -179904 
 K=4 Yes 0.79 -152144 293936 -165854 -168878 
    -159035 312103 -168977 -172395 

40% K=1 Yes 1.03 -165662 327210 -176630 -179990 
    -165975 328088 -176684 -180062 
 K=4 Yes 0.52 -153631 301742 -165682 -168509 
    -154340 296383 -166605 -169238 

50% K=1 Yes 0.23 -165953 325984 -176606 -179984 
    -165774 326635 -176652 -180039 
 K=5 Yes 0.24 -141186 270512 -152597 -156301 
    -143223 276504 -152508 -156065 

60% K=1 Yes 0.23 -165953 325984 -176606 -179984 
    -165774 326635 -176652 -180039 
 K=4 Yes 0.24 -140959 276843 -154910 -161630 
    -142632 271013 -158048 -163972 
 K=5 Yes 0.25 -139589 269451 -150462 -155386 
    -141729 278867 -152785 -156763 
 K=6 Yes 0.24 -142777 277176 -154219 -159586 
    -143167 274736 -156607 -163828 

70% K=1 Yes 0.31 -166015 327293 -176675 -180035 
    -166437 329621 -178225 -182604 
 K=5 Yes 0.25 -143909 267328 -159840 -164406 
    -148332 287013 -162173 -165889 

80% K=1 Yes 0.30 -166342 329918 -177175 -180596 
    -166260 330334 -177294 -180653 
 K=5 Yes 0.25 -146998 279887 -163584 -166509 

    -148868 284177 -163717 -166146 
90% K=1 Yes 0.53 -166077 330334 -176947 -180343 

    -166393 328640 -177086 -180458 
 K=5 Yes 0.44 -143909 267328 -159840 -164406 
    -148332 287013 -162173 -165889 

Note: Model fit metrics for various models using different carryover parameters (𝛿), number of classes 
(𝐾), with and without publisher heterogeneity.  



 
12 

 

Table W-5: SIZE OF LATENT CLASSES FOR 60% CARRYOVER MODEL 

𝑬(𝜽) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 
K = 1 0.23 100.00%      
K = 2 0.29 34.23% 65.77%     
K = 3 0.27 33.03% 59.27% 7.70%    
K = 4 0.24 3.53% 60.83% 7.78% 27.88%   
K = 5 0.25 2.35% 24.37% 7.80% 57.78% 7.71%  
K = 6 0.24 0.12% 13.11% 7.82% 17.21% 7.31% 54.44% 

 
 

Table W-6: FIT STATISTICS FOR BINARY MODEL 

LMD DIC elpd.waic elpd.isloo 

3 class -94605 199437 -98495 -100557 

4 class* -88365 185956 -91475 -93535 

5 class -91386 189967 -93973 -96706 

* Latent class sizes are 23%, 14%, 17%, and 46% 

 

 

Table W-7: MODEL WITH NO COVARIATES IN DISCRETIZED LOGNORMAL 

LMD DIC elpd.waic elpd.isloo 

3 class -152670 296337 -164486 -167314 

4 class -152711 297088 -164403 -167598 

5 class -152225 296166 -163302 -165742 

Proposed* -139589 269451 -150462 -155386 

* Proposed model with 60% carryover and 5 Classes 

 

  



 
13 

 

FIGURE W-1: RESPONSE SHAPES FOR BINARY MODEL 
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FIGURE W-2: RESPONSE SHAPES WITH EQUAL PUBLISHER EFFECTIVENESS 
 

 



 

FIGURE W-3: RESPONSE SHAPES

FIGURE W-4: RESPONSE SHAPES 

Browsing activity variable (left), less
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: RESPONSE SHAPESOF THE NON-LOG-TRANSFORMED MODEL

 

: RESPONSE SHAPES OF WEARY CLASSES FOR MODELS 

activity variable (left), less-active users (middle), more-active users (right)

 

TRANSFORMED MODEL 

 

OF WEARY CLASSES FOR MODELS  

active users (right) 

 


