WEB APPENDIX

W-A. FULL MODEL SPECIFICATION

Notation

iruser,i=1,....N; t: time, t=1,...,T;;

k: latent class, k=1,....K; J: advertising publisher, j = 1,...,J

V;¢: the number of visits an user / makes to the site at time ¢

¢1i¢ : the probability of an user i inclass k of visiting the site once at time ¢

i1 - the probability of an user i inclass k of visiting the site more than once at time ¢

AdStock;;: AdStock for an user i at time ¢, the mean-centered log of geometrically-smoothed
publisher exposures and each publisher’s differential effect.

x;¢j - the geometrically-smoothed index of each publisher’s exposures (¢;;; with a carryover

parameterd € [0,1].

z;¢ - the standardized number of days that have elapsed since the last exposure at time ¢

v;¢ : the mean-centered binary variable that indicates whether a user has visited the site within a
week before time ¢

w; : the standardized variables for a user i’s browsing behavior such as frequency of web usage,
breadth of different websites, and the tendency to visit media, financial, and e-commerce sites.

C : a N-vector that indicates class allocation, with each element taking on a value of {1, ..., K}

Full model
UielCi = K, Pritier Pait » Mitkr Tk) =

(1 = ik — 20010 PO Priei V™ (@002 Wi ligrer 1] ' 06>

bqitk = Zexp(vq—ﬁum) for g € {0,1,2} and

=0 exp(Vr+uir)
log(u;itk) = Vai + u;3 where
Vak = aqir + Qgadic + QqarAl + AqanZic + Aqsiziz + AqerVie + AgrivieAie + AggiVieZic
for q €{1,2,3}
u;|C;~N3(0,Zy)

J
AdStock;; = log [(Z Aj xijt> + 1] - X,
j=1



xijt = (1 - 6)Lijt +6- xijt Ci ~ Cat(mil, ...,miK)

exp (W;yi)
K_exp (w;y))

mi =

Likelihood

N K Ti
Lo, 5 wd b 6 ) « [ [ Fomalvewd [ [ £ Gl 4 s m) faalzoly
i t=1

i=1 k=1

Priors
a1~N(pa1 = 0,Aqq = 1001;;)
Ay ~N(tgz = 0,Aq; = 1001 )where r is the number of parameters
T ~1G(ny = 0.1,6, = 0.1)
T(Z)~IW (vo = 3,D¢ = I3)
y~N(u, = 0,V, = 1001,,), where w is the number of parameters in browsing behavior

1
Aj~Gamma(shape = 7’ scale = 5)

6 ~ Unif (0, o)

W-B: TREATMENT FOR MISSING ONLINE BEHAVIOR VARIABLES

Since the adverting agency manages two datasets (ads-focused impression dataset and
publishers-based ad network dataset) separately, only when users who were exposed to target ads and
visited the target advertiser’s site (when it is part of the ad network), their unique identifiers are
synchronized and allow us to observe their behaviors in both datasets. Thus, our dataset does not
contain browsing behaviors (w;) for users who never visited the advertiser’s website during the
observation window. Consider a set of non-visitors N and a set of visitors, E. While the probability
that visitor i for i € E belongs to class k can be estimated using the equation for m;;,, one must make
an inference of the membership probability for non-visitors i'for i’ € N because of the missing w;.
Because there is no evidence to suggest that general online browsing propensities (e.g., online usage
frequency, interests in finance, e-commerce, and media, etc.) differ between visitors and non-visitors,

the weighted average membership probabilities for each class, estimated from visitors, are applied to



ii.

non-visitors as well (note that this does not impose equal proportional apportioning into latent classes
for the non-visitors vs. visitors). In other words, the estimated coefficient of the constant term ¥, for

visitors, i € E, ¥y, is used for the baseline probabilities for each segment for i'e N :

P exp (¥
m. =y, == p()/o;i) ‘
ik X1 €xp (Vo))

W-C. MODEL ESTIMATION
Metropolis-Hastings (MH) algorithm to update y: : y|C, n,,V,
Assuming that y; = 0 for identification, the full conditional w-dimensional vector parameter yy (k

=1,...,K) is as follows:

n

n(nd6i = k) o | [ mineo = | | (—,fxp(wiy") )N(ykmy = 0,3 = 1001,,)
= ioae \Zjer exp(wiy;)

Since the posterior distribution does not have a closed form, we use a random-walk MH algorithm

with a multivariate-t distribution: yf:’l =y + Kk, where k,~MVt(0,s,T,), where T, is the empirical

covariance from an extended burn-in period (Haario et al. 2005) so that the proposal density follows

the approximate posterior covariance. The parameter s,, is adjusted such that the rejection ratio

belongs to .5~.7.

Updating m; and C;

Fori=1,..,N, draw C; € {1, ..., K} with probability m;;such that

i el f (Viel@i 4, i) f (il 2
Shea mu Mol £ (Viel e 4, wi) £ (il 20

Missing browsing behavior data for non-visitors. The dataset of our study does not contain

Pr(Ci = k) =

browsing behaviors (w;) for users who never visited the advertiser’s website during the observation
periods. Let’s call a set of non-visitors /N and a set of visitors E. Although the probability that

visitor i for i € E belongs to the class k can be estimated by the equation for m, we must make an

inference regarding the probability that the non-visitor i’ for i' € N belongs to the class & because of

the missing w_, To overcome the missing data problem, we assume that missing browsing behaviors
l

are independent from class allocation, applying baseline probability estimated from visitors to non-

visitors (Rubin 1976). In other words, the estimated coefficient of the constant term ¥, for

visitors,i € E, P, is used for the baseline probabilities for each segment for i' € N:
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iy = P T
ik Y51 exp (7o)
MH algorithm to update a;: a;|C; = k, u,, Ay
Let M, = [1 AdStock; AdStocki2 Z; Zl-2 v; VjA; v;z;] denote the T; X r submatrix of
covariates for an user i such that C; = k, oy denote a 2 X r coefficient matrix for the multinomial
component with the first column corresponding to one visit and the second column to more than one
visit, and o,y denote a r coefficient vector for the discretized lognormal component. Note that

simultaneous updating o) and o is possible while in our paper, we sequentially update them for

the better and more efficient mix. .

(okl|Ci = k, fgr, Agr) 1_[ [Pr(yi = Q|a1k;uiq)]1(yi=q)7'f(a1k)

i:Ci=k
Ti 5 M 1(vi=q)

- TTTITT [ a2 N(@slia = 0,
. q=0 | X2=1 exp(M atpy + usr) veltat = 2t
i:Ci=k t=1

= 1001,,)

(]G = bz Aoz ) | | [P0y = lages s, 6l 0= m(azy)
i:Ci=k

T;
2
- 1_[ 1_[1_[ Opz(y = Yielttic, T1) V%D N(ap |taz = 0, Agz = 100145)
q:

i:Ci=k t=1

Since the posterior distribution does not have a closed form, we use a random-walk MH algorithm
with a multivariate-# jumping distribution:

al((tﬂ) = a,((t) + K4 Where Ky :~MVt(0, Sqi Tar) for both oy and oy,
where parameters Ty and sy are set up as in the estimation of yy.
MH algorithm to update 7,
As Ty is defined in a positive domain, we use the lognormal distribution LN (ty |y, = 0,0, = 0.1) for
its prior distribution, indicating its posterior distribution as below.

T(lCi = otz Az @20 & | | (PR = qltzpe s, m0V = 0n(x)
i:Ci=k

Ty
2
= 1_[ nn P2 = Yieltie, 1) 'O LN (| = 0,0, = 0.1)
q:

i:Ci=k t=1

For proposal density, we use a random-walk algorithm with an exponential normal distribution.

‘L',((t+1) = exp (T,((t-l_l) + o0y) where 0, ~N(0,0.1)
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MH algorithm to draw u;;
(i |C; = K, yie, g, T, AdStocky) o f (yi|C; = k, ag, g, Ty, AdStock; )N (uy |0, Z)
For proposal density, we use a random-walk MH algorithm with a multivariate normal distribution
with variance X
wl = D 4y where ke ~MVN(0, Z)
Gibbs sampling to update X,
T(Zy |ug) ~IW <nk + vy, Dy + ukuk>

MH algorithm to update the website random effects 4;
The posterior distribution of 4; (j = 1, ..., J) is as follows

(41X, Y, @i, Br» Ukes T My, 0)

N K T J
«| [1D romatyiewo || [ £Oieladywndrazo| ¢ [=ay10)
i=1 (k=1 t=1 j=1
here the prior distribution (2 9)—;,1%_1 (—%) follows th distribution with

where the prior distribution 1 j| = r(%)el/ﬂ ; exp |~ ) follows the gamma distribution wi
a mean of one and a variance of 6.

For the proposal density, we use an independence sampler with gamma distribution (Hahn, 2014),

t+1) 4 (t AP 20
g(/lj(- * )M](- ))~G ammad(, ]T) where ¢ is the shape parameter and ’Tis the scale parameter.
MH algorithm to update 6
A prior density for 6 is assumed as a uniform distribution, Unif(0, c0), and the independent sampler
with gamma distribution is used for the proposal density.
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W-D. ROBUSTNESS CHECKS

To ensure that claims regarding weariness do not hinge on particular modeling assumptions,
we examine variants of the proposed model that turn off or hobble specific parts of it. Our initial set
of checks focus on the lognormal portion of the count model. We first examine a binary model that
distinguishes visits as 0 vs. 1-or-more; that is, the proposed model with the multinomial portion made
binary, and with no discretized lognormal component. Results (Web Appendix, Table W-6 and
Figure W-1) indicate that, for this model, four latent classes fit best. Classes 1 and 4 show mean
contours consistent with response concavity (weariness), although, due to information loss (i.e., the
number of visits), neither rises to the 95% contour concavity standard apparent for the full model.
We note in passing that it is precisely this information — the number of individual visits — that is
differentially important in determining eventual conversion, as pointed out by Moe and Fader (2004).
Using the binary incidence DV precludes fit statistics from being compared to those from our best-
fitting model. We can, however, re-estimate our model with no covariates (i.e., just intercepts) in the
discretized lognormal model, meaning a multinomial model separating 0 vs. 1 vs. 2+, which is nested
in our model. Model fit statistics (Table W-7, for 3-, 4-, and the best-fitting 5-class model) show that
removing covariates from the discretized lognormal portion (i.e., predicting distribution among the
2+ visit observations) produces greatly inferior results, roughly 10% worse on LMD, DIC, elpd.waic,
and elpd.isloo.

We further checked whether the existence of weary groups hinges on particular model
specifications (beyond the lognormal portion) or sample selection criteria; we do this in six ways.
First, we find a distinct weary class even when imposing equal publisher effectiveness (4; = 1;
Figure W-2). Second, we re-estimate the model using the same AdStock specification (Eq. (7)) but
with SA47 in place of log(1 + SAI); this results (Figure W-3) in five classes, one of which displays
strong weariness, but a dramatically poorer overall fit (roughly 15% in each of the four fit metrics).

Third, we excluded outliers using different percentiles (i.e., 0.1%, 1%, 5%, vs. the 0.01%



previously); in each case, there was at least one class with size greater than 30% and over 95% weary
contours. The last set of checks concerns the potential for so-called “activity bias” (Lewis and Reiley
2014), where very active internet users are more likely to both receive a high number exposures and
respond differently to advertising (compared with lighter users). This concern is addressed in two
distinct ways: (a) we constructed a daily browsing activity variable (i.e., the number of daily
webpages visited), using it as a control covariate; and (b) constructed two additional sample datasets
of 12,000 users based on overall browsing activities, specifically, the 2™ and 4™ quintiles of users’
total number of webpages visited). As before, models run in all these cases perfectly replicate our
substantive results: a single class with significant, substantial weariness (Figure W-4)." In short,
weariness was robust to all critical sample selection criteria and model constructs, save one: response

homogeneity, which we turn to next.

! Detailed estimation results for all these models are available from the authors.



Table W-1: Simulation Study Based on the Actual Data Set

(Burn-in 5,000/10,000 draws)

True True

Parameters value Median 25%  97.5% Parameters value Median 2.5% 97.5%
Ap=1,4=1 -1.21 -1.12 -1.37 -0.92 Ap=1,4=3 -0.071 -0.053 -0.071 -0.013
-1.11 -1.06 -1.2 -0.92 2.176 2.177 2.17 2.182
-0.8 -0.67 -0.8 -0.55 2.483 2.483  2.474 2.49
1.24 1.17 0.96 1.41 0.92 0.877  0.822 0.91
0.32 0.37 0.14 0.57 -0.226 -0.205 -0.22  -0.181
-0.92 -0.85 -1.07 -0.6 0.71 0.694  0.672 0.71
Ap=1,4=2 -1.04 -1.05 -1.19 -0.93 QAp=2,4=3 -1.036 -1.037 -1.043  -1.031
2.05 2.14 2 2.28 -0.936 -0.933 -0.94  -0.927
2.2 2.03 1.72 2.27 -0.074 -0.087 -0.099  -0.073
1.19 1.25 1.03 1.48 0.396 0.378  0.353 0.394
-1.52 -1.35 -1.72 -1.01 -0.504 -0.541 -0.565  -0.517
1.7 1.75 1.57 1.88 -1.986 -1.953  -1.977 -1.93
Ag=2,q=1 -2.29 -2.21 -2.35 -2.07 Ap=3,4=3 -0.204 -0.243  -0.261  -0.225
-1.54 -1.37 -1.67 -1.03 -0.631 -0.588 -0.614  -0.563
-5.05 -4.83 -5.24 -4.45 0.535 0.493  0.469 0.516
0.83 0.74 0.6 0.88 -0.071 -0.053 -0.071  -0.013
-2.16 -2.08 -2.19 -1.98 2.176 2.177 2.17 2.182
-1.32 -1.29 -1.38 -1.18 2.483 2.483 2.474 2.49

Ap=2,q=2 0.23 0.31 0.14 0.48
-0.87 -0.86 -0.95 -0.78 Ti=1 0.01 0.018 0.017 0.021
-1.23 -1.26 -1.65 -0.92 Ty 0.01 0.019  0.018 0.021
1.6 1.45 1.32 1.59 Tj=3 0.01 0.101  0.097 0.107

1.33 1.28 1.15 1.46
-1.57 -1.4 -1.7 -1.09 Y =2 -1.3 -1.4 -1.8 -1.2
Ap=3,4=1 -3.05 -2.98 -3.44 -2.55 -4 -4.4 -5 -3.9
1.18 1.12 0.92 1.28 1.8 2 1.6 2.3
-0.21 -0.25 -0.36 -0.14 V=3 -1.5 -1.1 -1.4 -0.9
-1.55 -1.55 -1.66 -1.42 2.9 2.4 2 2.7
0.34 0.34 0.17 0.53 -1.7 -1.6 -1.8 -1.3

0.34 0.32 0.21 0.43
Ap=3,4=2 -1.21 -1.12 -1.37 -0.92 0 1 0.69 1.21 0.42

-1.11 -1.06 -1.2 -0.92

-0.8 -0.67 -0.8 -0.55 p(4,7) 0.999

1.24 1.17 0.96 1.41

0.32 0.37 0.14 0.57

-0.92 -0.85 -1.07 -0.6




TABLE W-2. T-tests for the Number of Impressions Before vs. After visits

Total number of Number of impressions one ~ Number of impressions
impressions before, and week before, and after, the 6-8 days before, and
after, the first visit first visit after, the first visit
Obs. 4,135 4,135 4,135
MEAN Before 3.16 1.21 0.34
MEAN After 1.95 0.88 0.22
MEAN Diff 1.21 0.33 0.13
Std. Err 0.08 0.27 0.02
Std. Dev 5.26 1.73 1.03
95% CI — lower 1.05 0.28 0.96
— upper 1.37 0.38 0.16
p-value* 0.000 0.000 0.000

*Hy: The total number of impressions before and after the first visit is the same (i.e., difference =0)

TABLE W-3. Endogeneity Tests for Stratified Number of Impressions

Control Treatment Obs. Mean Std. Err  95% CI p-value .05 Crit. Diff
week 2:  week 3: no visit 1,307 0.33 0.03 027 039 0.14 0.12
1 imp. week 3: first visit 266 0.44 0.08 0.28 0.6

week 2:  week 3: no visit 364 0.61 0.07 046 0.75  0.02 0.23
2 imp. week 3: first visit 40 1.18 0.25 0.67 1.68

week 2:  week 3: no visit 59 32 0.39 242 398  0.27 0.22
3 imp. week 3: first visit 9 2 1.07 -0.47 4.46

week 2:  week 3: no visit 29 2.59 0.6 1.36 3.81 0.63 0.24
5 imp. week 3: first visit 3 1.67 1.2 3.5 6.84

week 3. week 4: no visit 1,815 0.38 0.02 034 042 091 0.40
1 imp. week 4: first visit 306 0.39 0.05 0.29 048

week 3:  week 4: no visit 537 0.62 0.05 0.52 0.73 035 0.13
2 imp. week 4: first visit 70 0.77 0.16 044 1.1

week 3. week 4: no visit 204 1.08 0.13 0.83 133 037 0.20
3 imp. week 4: first visit 31 1.39 0.29 0.79 1.98

week 3:  week 4: no visit 94 1.94 0.22 1.5 238 0.72 0.21
4 imp. week 4: first visit 11 2.18 0.62 0.81 3.55

week 3. week 4: no visit 45 2.04 0.3 143 266 0.76 0.30
5 imp. week 4: first visit 12 2.25 0.64 0.84 3.66

week 4:  week 5: no visit 1,829 0.24 0.01 021 027 0.51 0.31
1 imp. week 5: first visit 355 0.26 0.04 0.18 0.34

week 4:  week 5: no visit 489 0.53 0.06 042 0.64 098 0.17




2 imp.

week 4:

3 imp.

week 4:

4 imp.

week 4:

5 imp.

week 5:

1 imp.

week 5:

2 imp.

week 5:

3 imp.

week 5:

4 imp.

week 5:

5 imp.

week 6:

1 imp.

week 6:

2 imp.

week 6:

3 imp.

week 6:

4 imp.

week 6:

5 imp.

week 5:
week 5:
week 5:
week 5:
week 5:
week 5:
week 5:
week 6:
week 6:
week 6:
week 6:
week 6:
week 6:
week 6:
week 6:
week 6:
week 6:
week 7:
week 7:
week 7:
week 7:
week 7:
week 7:
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first visit
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first visit
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first visit
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first visit
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first visit
no visit
first visit
no visit
first visit
no visit
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85
241
27
78
12
40

1,951
405
676
107
279

51
121
26
70
12

1,738
379
537

90
189
30
90
13
33

0.53
0.81
1.07
1.1
2.25
1.6
2.11
0.07
0.04
0.12
0.19
0.15
0.16
0.29
0.5
0.37
0.17
0.07
0.08
0.26
0.21
0.26
0.13
0.48
0.38
0.24
0.25

0.11
0.08
0.28
0.16
0.54
0.27
0.56
0.01
0.01
0.02
0.08
0.03
0.06
0.06
0.19
0.1
0.17
0.01
0.03
0.07
0.06
0.09
0.06
0.16
0.18
0.12
0.25

0.3
0.65
0.5
0.78
1.07
1.05
0.81
0.04
0.02
0.08
0.04
0.09
0.03
0.17
0.12
0.18
-0.2
0.05
0.03
0.12
0.09
0.08
0.004
0.15
-0.01
0.01
-0.55

0.75
0.98
1.64
1.42
343
2.15
3.41
0.09
0.06
0.16
0.34
0.21
0.29
0.41
0.88
0.57
0.53
0.09
0.14
0.39
0.33
0.44
0.26
0.8
0.78
0.48
1.05

0.32

0.02

0.42

0.44

0.29

0.94

0.18

0.41

0.55

0.79

0.58

0.83

0.98

0.19

0.31

0.40

0.19

0.36

0.57

0.59

0.78

0.26

0.15

0.34

0.40

1.68
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TABLE W-4: MODEL FIT COMPARISONS

Model epld
Carryover

6)) Classes {4;} E(0) LMD DIC WAIC IS-LOO
10% K=1 Yes 0.50 -166020 329336 -176860 -180213
-166021 328608 -177016 -180418

K=3 Yes 0.87 -152522 286696 -163433 -166621

-152508 289103 -163920 -166805

20% =1 Yes 0.23 -165682 326851 -176615 -179916
-165718 327776 -176832 -180235

K=2 Yes 0.49 -141898 271173 -150154 -153956

-142362 276803 -152050 -156112

30% K=1 Yes 0.96 -165637 327382 -176564 -179893
-165742 325415 -176560 -179904

K=4 Yes 0.79 -152144 293936 -165854 -168878

-159035 312103 -168977 -172395

40% =1 Yes 1.03 -165662 327210 -176630 -179990
-165975 328088 -176684 -180062

K=4 Yes 0.52 -153631 301742 -165682 -168509

-154340 296383 -166605 -169238

50% =1 Yes 0.23 -165953 325984 -176606 -179984
-165774 326635 -176652 -180039

K=5 Yes 0.24 -141186 270512 -152597 -156301

-143223 276504 -152508 -156065

60% K=1 Yes 0.23 -165953 325984 -176606 -179984
-165774 326635 -176652 -180039

K=4 Yes 0.24 -140959 276843 -154910 -161630

-142632 271013 -158048 -163972

K=5 Yes 0.25 -139589 269451 -150462 -155386

-141729 278867 -152785 -156763

K=6 Yes 0.24 -142777 277176 -154219 -159586

-143167 274736 -156607 -163828

70% =1 Yes 0.31 -166015 327293 -176675 -180035
-166437 329621 -178225 -182604

K=5 Yes 0.25 -143909 267328 -159840 -164406

-148332 287013 -162173 -165889

80% =1 Yes 0.30 -166342 329918 -177175 -180596
-166260 330334 -177294 -180653

K=5 Yes 0.25 -146998 279887 -163584 -166509

-148868 284177 -163717 -166146

90% K=1 Yes 0.53 -166077 330334 -176947 -180343
-166393 328640 -177086 -180458

K=5 Yes 0.44 -143909 267328 -159840 -164406

-148332 287013 -162173 -165889

Note: Model fit metrics for various models using different carryover parameters (&), number of classes

(K), with and without publisher heterogeneity.
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Table W-5: SIZE OF LATENT CLASSES FOR 60% CARRYOVER MODEL

E(0) Class1 Class2 Class3 Class4 Class5S Class 6
0.23 100.00%

0.29 34.23%  65.77%

0.27 33.03% 59.27% 7.70%

0.24 3.53% 60.83% 7.78% 27.88%

0.25 235%  2437% 7.80% 57.78% 7.71%

0.24 0.12%  13.11% 7.82% 17.21% 7.31% 54.44%

NNTNNN
aw [ |w o=

Table W-6: FIT STATISTICS FOR BINARY MODEL

LMD DIC elpd.waic elpd.isloo
3 class -94605 199437 -98495 -100557
4 class* -88365 185956 -91475 -93535
5 class -91386 189967 -93973 -96706

* Latent class sizes are 23%, 14%, 17%, and 46%

Table W-7: MODEL WITH NO COVARIATES IN DISCRETIZED LOGNORMAL

LMD DIC elpd.waic elpd.isloo
3 class -152670 296337 -164486 -167314
4 class -152711 297088 -164403 -167598
5 class -152225 296166 -163302 -165742
Proposed*  -139589 269451 -150462 -155386

* Proposed model with 60% carryover and 5 Classes

12



Class 1

04-

Expected Visits

[=]
[
'

=
P
|

0.1+

0.0-

Expected Wisits

Class 3

0.15-

1

=k

=
'

=

=

o
l

0.00-

FIGURE W-1: RESPONSE SHAPES FOR BINARY MODEL

=18

=

1
SAl with 60%

2 3
carryover effect

.

Class 2

04-

[=]
w
'

Expected Wisits
N

0.1+

0.0-

o
vl
%]
w
'
(2

Class 4

0.5+

Expected Wisits

0.05-

0.00-

1 2 3 4
SAl with 60% carryover effect

(=]

13



FIGURE W-2: RESPONSE SHAPES WITH EQUAL PUBLISHER EFFECTIVENESS
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FIGURE W-3: RESPONSE SHAPESOF THE NON-LOG-TRANSFORMED MODEL

Class 1 Class 2
1.00-

Expected Visits
= =
ES o

Expected Visits

=
]
o

o

=
o
=]
=]

00 05 10 15 20 00 05 10 15
Class 3 Class 4
06"
0.20-
o 2
B B
S 0.15- = 04-
o o
2 2
;i 010- ;i
= s 0.2
] ]
0.05-
D,[][]' I 1 1 I [][]- I 1
0 1 2 3 0.0 0.5 10
Class 5
8 10-
i
>
el
@
E
205
>
i
0-0- 1 1 T 1 1
0.0 05 10 15 20

SAl (no log) with 60% carryover effect

FIGURE W-4: RESPONSE SHAPES OF WEARY CLASSES FOR MODELS

Browsing activity variable (left), less-active users (middle), more-active users (right)
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