
APPENDIX 

Proof of Proposition 1 

Firm's i objective function after the expression of the demand function has been replaced 

reads: 
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     The derivative with respect to iO  and iD are: 
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    Equating the above expressions to zero, we get the first-order optimality condition for an interior 

equilibrium and solving for a symmetric solution (1) and (2) can be easily obtained. Replacing 

these last expressions in the demand and the firm's profits (3) and (4) are derived. 

The second-order concavity conditions ensuring an interior maximum for the symmetric 

solution (O, D) read: 
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    Proof of Proposition 2 

    Replacing 0iO in (12) and equating to zero, EDMD  in (5) is obtained. EDMD  is positive if and 

only if  t >nr/(4c). 



The optimal demand and profits in (6) and (7) can be easily obtained by substituting the 

expression of  EDMD . Therefore, if t >nr/(2c), then EDMD , EDMq are positive and EDM is greater 

or equal to zero. Note that nr/(2c) increases with n and r, and decreases with c. 

  The condition on the total demand q₁+q₂≤n, taking into account  EDMq reads: (4c-nr)t≥nr. 

This last condition is only feasible if 4c-nr>0, and if this is the case, it can be rewritten as: t≥nr/(4c-

nr). Note that nr/(4c-nr) increases with n and r, and decreases with c. 

It can be easily checked that nr/(4c-nr)≥nr/(2c) if and only if nr≤2c. Therefore, the corner 

solution (O=0, EDMD ) requires condition (nr≤2c and t≥nr/(2c)) or condition (2c<nr<4c and 

t≥nr/(4c-nr)) in order to be feasible.  

Proof of Proposition 3 

    Replacing 0iD  in (11) and equating to zero, EOMO in (8) is obtained. The optimal demand 

and profits in (9) and (10) can be easily obtained substituting the expression of EOMO . 

If δ=θ, replacing in (9) and (10) one gets that the optimal demand is null and the optimal 

profits are negative. Therefore, this corner solution ( EOMO , D=0) is unfeasible when δ=θ.   

From (9) and (10) the following conditions can be easily derived: 

qEOM  > 0    if and only if              θ > δ, 

πEOM  ≥ 0   if and only if  2t(θ − 2δ) + nr(θ2 − δ2 ) ≥ 0. 

    Both conditions are satisfied simultaneously in the following two cases: 
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    The condition on the total demand q₁+q₂≤n, taking into account EOMq reads: (nrθ(θ-δ)-

4)t≤nr(θ+δ). This last condition is fulfilled if one of the following two conditions is satisfied: 

nrθ(θ − δ) − 4 < 0,                                                         

or                                                                       
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    Furthermore, 
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Mixing conditions (13) and (14) taking into account (15), five possibilities as described 

below characterize the feasibility of equilibrium ( EOMO , D=0). The two firms exclusively 

undertake offensive marketing at the equilibrium if one of the following conditions is satisfied: 
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