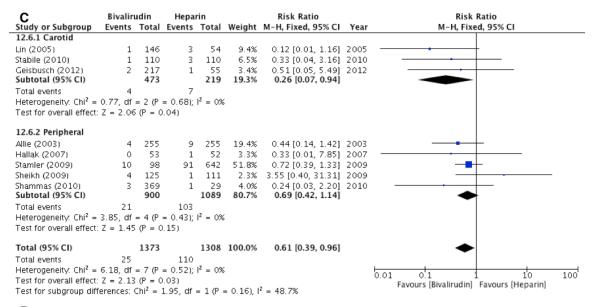
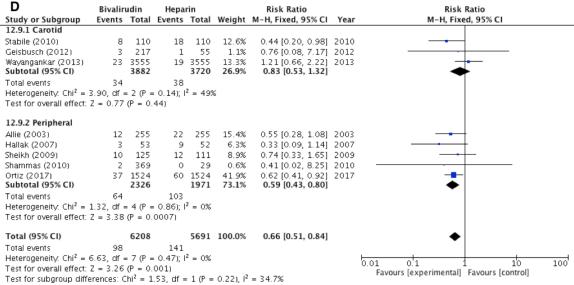
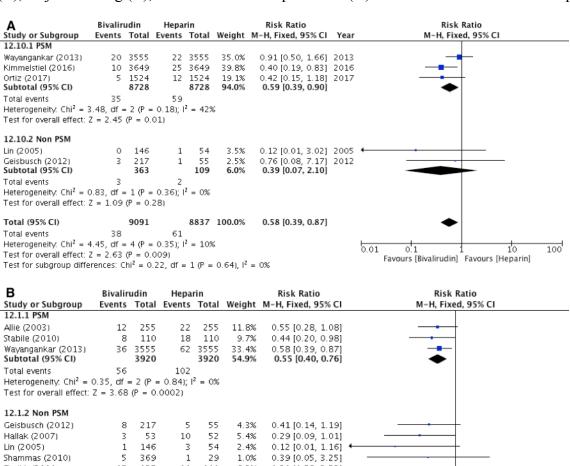
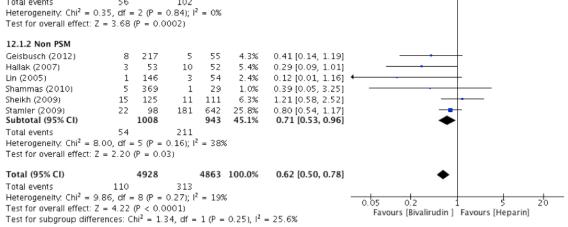

Supplemental table 1. Bleeding definitions

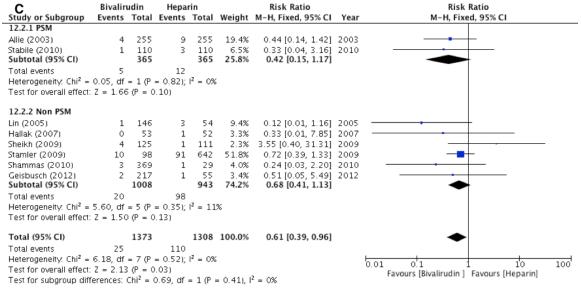

Study	Major Bleeding	Minor Bleeding	All bleeding
Allie et al	Drop in hemoglobin of ≥ 3 g/dl, cerebrovascular	Non-intracranial or retroperitoneal bleeding,	Combination of major and
	accident, any complications requiring surgery,	small (< 5 cm) groin hematomas and	minor bleeding was used
	intracranial bleeding, retroperitoneal hematoma, > 5	transfusion of ≤ 2 units packed cells.	
	cm groin hematoma, or > 2 units packed cell		
	transfusion.		
Lin et al	Major groin or retroperitoneal bleeding requiring		Major bleeding was used
	operative evacuation or blood transfusion		
Hallak et al	Hemorrhagic event leading to surgery or death,	Drop in hemoglobin of >3 g/dl but <5 g/dl,	Combination of major and
	extended or unexpected hospitalization, intracranial	with bleeding from a known site; a	minor bleeding was used
	hemorrhage, transfusion of >2 units of whole blood	spontaneous gross hematuria, hemoptysis, or	
	or packed red blood cells, a fall in hemoglobin (Hgb)	hematemesis; as well as any bleeding event	
	>5 g/dl (or >15% of hematocrit) with no bleeding	that did not meet the criteria for a major	
	site identified	hemorrhage	
Sheikh et al	Intracranial or retroperitoneal hemorrhage, a fall in	Bleeding that did not meet the major	Combination of major and
	hemoglobin of 5 g/dl, and/or transfusion of 2 U of	bleeding criteria	minor bleeding was used
	packed red blood cells (PRBCs) for any reason		
Stamler et al	Overt blood loss resulting in a decrease of	All hematomas that did not meet the criteria	Combination of major and
	hemoglobin level of more than 3 g/dL, any decrease	for major bleeding, transfusion of less than 2	minor bleeding was used
	in hemoglobin of more than 4 g/dL, transfusion of at	U of packed red blood cells, or other non-	
	least 2 U of whole blood or packed red blood cells,	intracranial or retroperitoneal bleeding	
	or intracranial or retroperitoneal hemorrhage		
Shammas et al	Drop in hemoglobin .3 g/dL with a source of bleed-	Bleeding that did not meet the major	Combination of major and
	ing, any .4-g/dL decrease in hemoglobin, and/or	bleeding criteria	minor bleeding was used
	intracranial or retroperitoneal bleeding		
Stabile et al	Hemorrhagic stroke or if hematocrit decreased by 15	Hematocrit decreased by 10 points with	Combination of major and
	points or by 10 to 15 points with clinical bleeding	clinical bleeding or by 10 to 15 points without	minor bleeding was used
		clinical bleeding	
Geisbuch et	Bleeding requiring any surgical or interventional	onset of hematoma clinical bleedings with a	Combination of major and
al	repair, bleeding requiring any transfusion of whole	hematocrit decrease of <10 points	minor bleeding was used
	blood or packed red blood cells, intracerebral		
	hemorrhage and clinical bleeding with a hematocrit		
	decrease of >10 points		
Wayangankar			Procedure-related bleeding
et al			or hematoma requiring red
			blood cell transfusion, and
			intracerebral hemorrhage


Supplemental table 1. Quality assessment

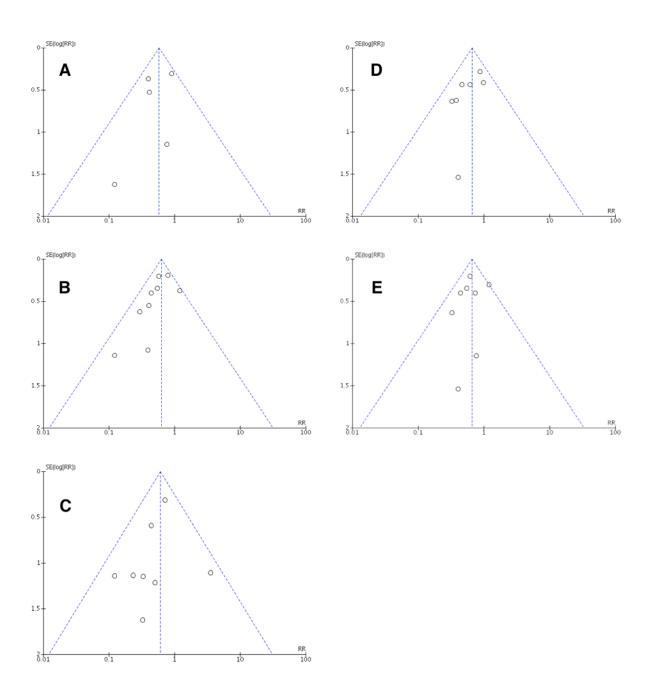
Author	Year	Selection			Comparability		Outcome			Total	
		1	2	3	4	1	2	1	2	3	
Allie et al	2003	*	*	*	*	*	*	*	*	*	9
Lin et al	2005	*	-	*	*	-	*	*	*	*	7
Hallak et al	2007	*	-	*	-	*	-	*	*	*	6
Sheikh et al	2009	*	*	*	-	*	*	*	*	*	7
Stamler et al	2009	*	*	*	-	-	*	*	*	*	7
Shammas et al	2010	*	-	*	*	-	*	*	*	*	7
Stabile et al	2010	*	*	-	*	*	*	*	*	*	8
Geisbuch et al	2012	-	*	*	*	-	-	*	*	*	6
Wayangankar et al	2013	*	*	*	*	*	*	*	*	*	9
Kimmelstiel et al	2016	*	*	*	*	*	*	*	*	*	9
Ortiz et al	2017	*	*	*	*	*	*	*	*	*	9


Supplemental figure 1. **Forest plot**. Comparison of subgroups according to anatomic location of intervention (Carotid versus other peripheral interventions) in patients undergoing peripheral interventions for all-cause mortality (A), all-bleeding (B), major bleeding (C), and access site complications (D) between bivalirudin versus heparin.





Supplemental figure 2. Comparison of subgroups according to study design (PSM versus non-PSM) in patients undergoing peripheral interventions for all-cause mortatlity (A), all-bleeding (B), major bleeding (C), and access site complications (D) between bivalirudin versus heparin.



D	Bivalirudin Hepar		in Risk Ratio				Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI		
12.4.1 PSM										
Allie (2003)	12	255	22	255	15.4%	0.55 [0.28, 1.08]	2003			
Stabile (2010)	8	110	18	110	12.6%	0.44 [0.20, 0.98]	2010			
Wayangankar (2013)	23	3555	19	3555	13.3%	1.21 [0.66, 2.22]	2013			
Ortiz (2017)	37	1524	60	1524	41.9%	0.62 [0.41, 0.92]	2017			
Subtotal (95% CI)		5444		5444	83.0%	0.67 [0.51, 0.89]		•		
Total events	80		119							
Heterogeneity: Chi ² = !	5.21, df =	= 3 (P =	0.16); (² = 429	6					
Test for overall effect:	Z = 2.80	(P = 0.	005)							
12.4.2 Non PSM										
Hallak (2007)	3	53	9	52	6.3%	0.33 [0.09, 1.14]	2007	-		
Sheikh (2009)	10	125	12	111	8.9%	0.74 [0.33, 1.65]	2009			
Shammas (2010)	2	369	0	29	0.6%	0.41 [0.02, 8.25]	2010			
Geisbusch (2012)	3	217	1	55	1.1%		2012			
Subtotal (95% CI)		764		247	17.0%	0.57 [0.31, 1.07]		•		
Total events	18		22							
Heterogeneity: Chi ² = 1	1.28, df =	= 3 (P =	0.73); [$^{2} = 0\%$						
Test for overall effect:	Z = 1.75	(P = 0.	08)							
Total (95% CI)		6208		5691	100.0%	0.66 [0.51, 0.84]		•		
Total events	98		141							
Heterogeneity, $Chi^2 = 6.63$, $df = 7$ ($P = 0.47$); $I^2 = 0\%$								100		
	Test for overall effect: Z = 3.26 (P = 0.001) Favours [Bivalirudin] Favours [Heparin]								100	
Test for subgroup differences: $Chi^2 = 0.21$, $df = 1$ ($P = 0.65$), $I^2 = 0\%$										

Supplemental figure 3. **Funnel plot.** Statistically significant outcomes. (A) All-cause mortality, (B) All-bleeding, (C) Major bleeding, (D) Minor bleeding, (E)Access site complications.

