
SUPPLEMENTARY MATERIAL

Code will be provided on the author’s Dataverse.

R-packages for Imputation: 3 R-packages used to impute the missing data: Amelia II,

MICE, sbgcop

R-code for simulation in Section 4: R-code to replicate simulation study in section 4.

R-code for Application in Section 5: R-code to replicate application in section 5.
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A Missing at Random

We now describe a missing data mechanism that always produces MAR data. Our goal

is to make the simulations as realistic as possible; therefore some variables will be fully

observed, and others will have different amounts of missing values.

1. Given a fully observed data set X randomly select four variables, one from each of

the four classes, that will be fully observed; without loss of generality relabel them

X1, X11, X21 and X31.

2. Randomly select four variables from the remaining thirty six, one from each of the

four classes, that will have a 5-6% missingness; without loss of generality relabel them

X2, X12, X22 and X32. The probability that the ith observation for each variable is

missing is based on a logistic regression on the fully observed variables, X1, X11, X21

and X31, adjusted so that the mean number of missing variables is between 5-6%. The

missingness indicators are then sampled from independent Bernoulli random variables

with the appropriate probabilities. Let X(1) = (X1, X2, X11, X12, X21, X22, X31, X32)

and X
(1)
cc be the complete cases after removing the any rows that have missing values.

3. The probability of the ith observation missing for the remaining thirty two variables

is proportional to a logistic regression on the fully observed X
(1)
cc . The probabilities

are then adjusted so that the mean number of missing variables is equal to the

Missingness Coefficient (MC) (see Table 1 for the range of values that we considered).

The missingness indicators are sampled from independent Bernoulli random variables

with the appropriate probabilities. If the ith row of X(1) has been removed in X
(1)
cc
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then that row is always observed for the thirty-two variables.

The proportion of missing values is slightly lower than the MC as four variables are fully

observed, and four others only have 5-6% of their values missing.

B Missing not at Random

We now describe a missing data mechanism that produces MNAR data with extremely

high probability.

1. Given a fully observed data set X randomly select four variables, one from each of

the four classes, that will be fully observed; without loss of generality relabel them

X1, X11, X21 and X31.

2. Randomly select four variables from the remaining thirty six, one from each of the

four classes, that will have a small amount of missingness; without loss of generality

relabel them X2, X12, X22 and X32. The probability that the ith observation is missing

is given by,

P (R2 = 1|X) = 1X2>0pMC ,

P (R12 = 1|X) = 1X12=0pMC ,

P (R22 = 1|X) = 1X22>3pMC ,

P (R32 = 1|X) = 1X32=3pMC ,

where the value of pMC is given by the MC in Table 1.
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3. For the remaining thirty two variables the probability of the ith observation missing

is based on a logistic regression on X(1) adjusted so that the mean number of missing

variables is equal to the MC (see Table 1). The missingness indicators are again sam-

pled from independent Bernoulli random variables with the appropriate probabilities.

In contrast to the MAAR mechanism if the ith row of X(1) has missing values then

other variables in that row can still be missing.
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C Plots of MNAR Simulation Results

[Figure 5 about here.]

[Figure 6 about here.]
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D Number of Simulations for which Amelia II crashed

[Table 3 about here.]

E Example sbgcop Application

In this section, we discuss how to use the ‘sbgcop‘ package for multiple imputation in

the context of conducting inferential analysis on data with missingness. Specifically, we

show how to conduct regression analysis in the presence of missing data using an example

dataset. First we simulate a dataset in which we introduce missingness.

 # simulate data

 set.seed(6886)

 n <- 100

 x1 <- rnorm(n) ; x2 <- rnorm(n) ; x3 <- rnorm(n)

 y <- 1 + 2*x1 -1*x2 + 1*x3 + rnorm(n)



 ## organize into matrix

 raw <- cbind(y, x1, x2, x3)



 ## simulate missingness

 naMat <- matrix(rbinom(n*4,1,.7),

 nrow=nrow(raw),ncol=ncol(raw))

 naMat[naMat==0] <- NA



 ## remove observations

 data <- raw * naMat



 ## summarize missingness

 missStats <- apply(data, 2, function(x){sum(is.na(x))/nrow(data)})

 missStats <- matrix(missStats,

 ncol=1,

 dimnames=list(colnames(data),'Prop. Missing')

 )

Using this simulated dataset, our goal is to show how to conduct inference on the effect
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of x1, x2, and x3 on y after imputing the missing values with the sbgcop package in R.

sbgcop is available on CRAN and can be installed and loaded into your R session just as

any other package.

 install.packages('sbgcop')

 library(sbgcop)

The key function in this package is sbgcop.mcmc and there are four arguments that

should always be set (for a full list of arguments run ?sbgcop.mcmc):

• Y : a matrix with missing values to be imputed

• nsamp: number of iterations of the Markov chain

• odens: number of iterations between saved samples

• seed: an integer for the random seed

The Y argument specifies the dataset to be imputed. The object passed to the argument

must be in matrix format. Additionally, users should only include variables that can

provide information to the imputation algorithm. For example, this can include lags and

leads of a variable in the case of time-series-cross-sectional data. Identification variables,

such as actor names, abbreviations, or years, should not be included in the matrix.

The imputation procedure in sbgcop.mcmc is a Bayesian estimation scheme, so users

must pass the number of iterations for which they want the Markov chain to be run to the

nsamp argument. If nsamp is set to 100, then the Markov chain will run for 100 iterations

and 100 imputed datasets will be produced. The odens argument specifies how often an
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iteration from the Markov chain should be saved. Thus, if nsamp is set to 100 and odens

is set to 4, 25 imputed datasets will be returned by sbgcop.mcmc. Last, since this is a

Bayesian model and we will be sampling from distributions to arrive at parameter values,

one should always pass an integer to the seed argument. This way when users rerun

sbgcop.mcmc they will arrive at the same results.

To impute missingness in our example dataset, we pass our data object to the sbgcop.mcmc

function. We run the Markov chain for 2000 iterations and save every 10th iteration. We

store the output from sbgcop.mcmc to sbgcopOutput.

 sbgcopOutput <- sbgcop.mcmc(Y=data, nsamp=2000, odens=10, seed=6886)

This is quite simple to do as the output from sbgcop.mcmc is simply a list. The first

element in this list is C.psamp, which contains posterior samples of the correlation matrix.

The C.psamp is structured as an array of size p x p x nsamp/odens. Where p indicates

the number of variables included in the imputation process. In our case, the data object

includes 4 variables and we ran the Markov chain for 2000 iterations saving every tenth.

Thus giving us dimensions of: 4 x 4 x 200.

Each value in this array is providing us with the estimated association between a pair

of parameters at every saved iteration of the Markov chain. We show an example below

using the 100th and 200th saved iterations.

37



 sbgcopOutput$C.psamp[,,c(100,200)]



 ## , , 100

 ##

 ## y x1 x2 x3

 ## y 1.0000000 0.78961179 -0.43494151 0.36593885

 ## x1 0.7896118 1.00000000 -0.08686933 0.05172101

 ## x2 -0.4349415 -0.08686933 1.00000000 -0.14619182

 ## x3 0.3659389 0.05172101 -0.14619182 1.00000000

 ##

 ## , , 200

 ##

 ## y x1 x2 x3

 ## y 1.0000000 0.68269537 -0.46139236 0.4138161

 ## x1 0.6826954 1.00000000 0.08754115 0.1495993

 ## x2 -0.4613924 0.08754115 1.00000000 -0.1278238

 ## x3 0.4138161 0.14959933 -0.12782384 1.0000000

To generate a trace plot of this data we need to restructure our dataframe into a long

format. We can do so using the reshape2 package:

 library(reshape2)

 sbgcopCorr = reshape2::melt(sbgcopOutput$'C.psamp')



 # remove cases where variable is the same in both columns

 sbgcopCorr = sbgcopCorr[sbgcopCorr$Var1 != sbgcopCorr$Var2,]



 # construct an indicator for pairs of variables

 sbgcopCorr$v12 = paste(sbgcopCorr$Var1, sbgcopCorr$Var2, sep='-')



 #

 print(head(sbgcopCorr))



 ## Var1 Var2 Var3 value v12

 ## 2 x1 y 1 0.62439270 x1-y

 ## 3 x2 y 1 -0.43347850 x2-y

 ## 4 x3 y 1 0.28013565 x3-y

 ## 5 y x1 1 0.62439270 y-x1

 ## 7 x2 x1 1 0.03581958 x2-x1

 ## 8 x3 x1 1 0.15626246 x3-x1
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Using the reshape2 package we have reformatted the array into a dataframe, in which

the first two columns designate the variables for which a correlation is being estimated,

the third an indicator of the saved iteration, the fourth the correlation, and the fifth an

indicator designating the variables being compared.

Next, we use ggplot2 to construct a simple trace plot shown in Figure E.7.

 library(ggplot2)



 ggplot(sbgcopCorr, aes(x=Var3, y=value, color=v12)) +

 geom_line() +

 ylab('Correlation') + xlab('Iteration') +

 facet_wrap(~v12) +

 theme(legend.position='none')

[Figure 7 about here.]

Based on these trace plots we can see that the Markov chain tends to converge rather

quickly in this example. The coda package provides an excellent set of diagnostics to test

convergence in more depth.

After conducting the imputation and evaluating convergence, our goal is now to use

the imputed datasets to conduct inferential analysis. For the purpose of this example, we

estimate the effect of x1, x2, and x3 on y. By using sbgcop as above we have generated 200

copies of our original dataset in which posterior samples of the original missing values have

been included. Each of these copies are saved in the output from sbgcop.mcmc, which has

dimensions of 100 x 4 x 200.

The first two dimensions of this object correspond to the original dimensions of our

data object, and the third corresponds to the number of saved iterations from the Markov
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chain.

Having generated a set of imputed datasets, our next step is to use a regression model

to estimate the effect of our independent variables on y. We cannot just use one of the

imputed datasets – as this would not take into account the uncertainty in our imputa-

tions. Instead we run several regression on as many of the imputed datasets generated by

sbgcop.mcmc that we think are appropriate. For the sake of this example, we utilize all 200

imputed datasets, but typically randomly sampling around 20 imputed datasets should be

be sufficient.

Each time we run the regression model, we will save the coefficient and standard errors

for the independent variables and organize the results into a matrix as shown below.

 coefEstimates <- NULL

 serrorEstimates <- NULL

 for( copy in 1:dim(sbgcopOutput$'Y.impute')[3]){

 # extract copy from sbgcopOutput

 copyDf <- data.frame(sbgcopOutput$'Y.impute'[,,copy])

 names(copyDf) <- colnames(sbgcopOutput$Y.pmean)

 # run model

 model <- lm(y~x1+x2+x3,data=copyDf)

 # extract coefficients

 beta <- coef(model)

 coefEstimates <- rbind(coefEstimates, beta)

 # extract standard errors

 serror <- sqrt(diag(vcov(model)))

 serrorEstimates <- rbind(serrorEstimates, serror)

 }



 print(head(coefEstimates))



 ## (Intercept) x1 x2 x3

 ## beta 0.6576411 1.449662 -1.1290934 0.4569379

 ## beta 0.7436243 1.661250 -1.0542155 0.6866980

 ## beta 0.8299671 1.613892 -1.1363969 0.7454211

 ## beta 0.8073597 1.513452 -0.7512275 0.6331863

 ## beta 0.8112010 1.583065 -0.9608251 0.6529509
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 ## beta 0.7882072 1.509635 -0.5152139 0.8897130

The last step is to combine each of the estimates using using Rubin’s rule. Many

existing packages have implemented functions to aid in this last step, one could use the

pool function from mice or the mi.meld function from Amelia II as below.

 paramEstimates <- Amelia::mi.meld(q=coefEstimates, se=serrorEstimates)

 print(paramEstimates)



 ## £q.mi

 ## (Intercept) x1 x2 x3

 ## [1,] 0.892732 1.70032 -0.9023761 0.7235922



 ## £se.mi

 ## (Intercept) x1 x2 x3

 ## [1,] 0.1680402 0.1965969 0.2213771 0.1588638

The resulting parameter estimates take into account the uncertainty introduced through

the imputation process, and we can interpret them just as we would interpret the results

from a typical regression.

Below we show the full set of steps required to conduct a regression analysis in the context

of missing data using sbgcop.

 library(sbgcop)

 sbgcopOutput <- sbgcop.mcmc(Y=data, nsamp=2000, odens=10, seed=6886)



 ## restructure posterior samples of correlation matrix

 library(reshape2)

 sbgcopCorr = reshape2::melt(sbgcopOutput$'C.psamp')

 sbgcopCorr = sbgcopCorr[sbgcopCorr$Var1 != sbgcopCorr$Var2,]

 sbgcopCorr$v12 = paste(sbgcopCorr$Var1, sbgcopCorr$Var2, sep='-')



 ## trace plot of C.psamp

 library(ggplot2)
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 ggplot(sbgcopCorr, aes(x=Var3, y=value, color=v12)) +

 geom_line() +

 ylab('Correlation') + xlab('Iteration') +

 facet_wrap(~v12) +

 theme(legend.position='none')



 ## conduct regression analysis

 coefEstimates <- NULL

 serrorEstimates <- NULL

 for( copy in 1:dim(sbgcopOutput$'Y.impute')[3]){

 copyDf <- data.frame(sbgcopOutput$'Y.impute'[,,copy])

 names(copyDf) <- colnames(sbgcopOutput$Y.pmean)

 model <- lm(y~x1+x2+x3,data=copyDf)

 beta <- coef(model)

 coefEstimates <- rbind(coefEstimates, beta)

 serror <- sqrt(diag(vcov(model)))

 serrorEstimates <- rbind(serrorEstimates, serror) }



 ## combine estimates using Rubin's rules

 paramEstimates <- Amelia::mi.meld(q=coefEstimates, se=serrorEstimates)
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Figure E.1: Number of references to “multiple imputation” in articles from five top sociol-
ogy and political science journals since 1990.
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Figure E.2: Simulation study results for the MAR data as a function of the missingness
coefficient, averaging over the correlation. The plot is split by the different variable types
(normal, binomial, Poisson and ordinal) and the three outcomes of interested (the bias,
coverage and interval length). The rightmost panel shows the result averaging over the
different variable types.
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Figure E.3: Simulation study results for the MAR data as a function of the correlation,
averaging over the missingness coefficient. The plot is split by the different variable types
(normal, binomial, Poisson and ordinal) and the three outcomes of interested (the bias,
coverage and interval length). The rightmost panel shows the result averaging over the
different variable types.
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haus et al. (2014) based on three imputation techniques and list-wise deletion
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Figure E.5: Simulation study results for the MNAR data as a function of the missingness
coefficient, averaging over the correlation. The plot is split by the different variable types
(normal, binomial, Poisson and ordinal) and the three outcomes of interested (the bias,
coverage and interval length). The rightmost panel shows the result averaging over the
different variable types.
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Figure E.6: Simulation study results for the MNAR data as a function of the correlation,
averaging over the missingness coefficient. The plot is split by the different variable types
(normal, binomial, Poisson and ordinal) and the three outcomes of interested (the bias,
coverage and interval length). The rightmost panel shows the result averaging over the
different variable types.
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Figure E.7: Trace plot of correlation between variables.
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Correlation (ρ)
Missingness

Coefficient (MC)

0.2 0.3
0.35 0.4
0.5 0.5
0.65 0.6

Table E.1: Simulation Study configurations.

55



Table E.2: Share of Missingness in Variables of Interest

Democracy Support Inequality Income Age
19.9 1.8 12.9 0.2

Gender Institutional Confidence Interest in Politics Interpersonal Trust
0.1 11.7 2.5 3.7

Education Leftist Ideology Prior Regime Evaluation
3.9 18.5 21.3
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Correlation
0.2 0.35 0.5 0.65

0.3 2 0 0 7
Share of 0.4 93 16 8 0

Missingness 0.5 285 138 37 13
0.6 485 305 159 72

Table E.3: The number of Amelia II crashes out of the 1000 simulations under each of
the possible scenarios.
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