Tables

Supplementary Table 1 Excluded randomised controlled trials found from search strategy and reason.

No	Excluded randomised controlled trials found from search strategy	Reason
1.	Backward walking training to improve mobility in acute stroke: A pilot study ¹	Poster
2.	Effect of retro and forward walking on quadriceps muscle strength, pain, function, and mobility in patients with knee osteoarthritis: a protocol for a randomized controlled trial 2	Protocol
3.	Effect of backward walking treadmill training on walking capacity after stroke: a randomized clinical trial ³	Protocol
4.	Effectiveness of backward walking treadmill training in lower extremity function after stroke ⁴	Chinese Language
5.	Forward and backward locomotion in individuals with dizziness ⁵	Not gait impairment condition
6.	Warm-up reduces delayed onset muscle soreness but cool-down does not: a randomised controlled trial ⁶	Healthy subjects

Experimental group vs control group	Study/condition	Design	Participants	Intervention	Outcome measures
1. BW with CPT vs CPT	Rathi et al ³¹ (2017) Low back pain	RCT	Exp: n= 15 Mean age 36.73 Con: n = 15 Mean age 34	Exp = Backward walking (BW) 10 min/session, 5 sessions/day x 4 weeks with conventional physiotherapy treatment (CPT) 10 min Con = CPT 10 min CPT = Heat therapy and strengthening exercises	NPRS Core muscle strength Follow-up = 4 weeks
	Rangey et al ²⁷ (2017) Knee osteoarthritis	Quasi Exp study	Exp: $n = 10 (4M, 6F)$ Mean age 53.4 ± 8.9 Con : $n = 10 (1M, 9F)$ Mean age 49.0 ± 7.2	Exp = BW with CPT 20 min/session, 2 sessions/day x 2 weeks Con 1 = CPT 10 min/day x 2 weeks CPT = Heat therapy, strengthening and stretching exercises.	VAS WOMAC Follow-up = 2 weeks
	Wadhwa et al 24 (2016) Knee osteoarthritis	RCT	Exp: $n = 17$ (7 M, 10 F) Mean age 65.65 ± 4.26 Con: $n = 15(6 M, 9 F)$ Mean age 67.59 ± 4.78	Exp = BW 10 min/session, 3 weeks with CPT Con = CPT 5 sessions hold/2 sessions of rest, 10 repetitions, 3 days/week for 3 weeks CPT = Heat therapy and strengthening exercises	NPRS WOMAC Follow-up = 3 weeks
	Anadkat et al ³² (2015) Knee osteoarthritis	RCT	Exp: $n = 20$ (8M, 12F) Mean age 51.30 \pm 6.48 Con: $n = 20$ (11M, 9F) Mean age 49.95 \pm 6.93	Exp = BW 10 min/session, 5 days/week (3 weeks) with CPT 20 min/day Con = CPT 20 min/day	VAS WOMAC Follow-up = 3 weeks

Supplementary Table 2. Summary of included studies (n = 21)

			CPT = Heat therapy, strengthening and stretching exercises	
Manisha et al ²⁵ (2015) Knee osteoarthritis	RCT	Exp: $n = 15$ Con: $n = 15$ Age = $40 - 60$	Exp = BW 10 min/session, 4 weeks with CPT Con = CPT 4 weeks CPT = Heat therapy and strengthening exercises	Step test WOMAC Follow-up = 4 weeks
Rathi et al ²³ (2014) Knee osteoarthritis	RCT	Exp: $n = 10$ Mean age 53.9 ± 5.7 Con: $n = 10$ Mean age 53.2 ± 8.24	Exp = BW 10 min/session, 3 days/week (2 weeks) with CPT 20 min/day Con = CPT 20 min/day CPT = Heat therapy, strengthening and stretching exercises	NPRS Reduced WOMAC Quadriceps strength Follow-up = 2 weeks
Gondhalekar et al ⁹ (2013) Knee osteoarthritis	RCT	Exp: $n = 15$ (8M) Con: $n = 15$ (7M) Mean age 63.43 ± 6.202	Exp = BW 10 min/session, 3 sessions/day x 3weeks with CPT Con = CPT 20 min/session, 2 sessions/day x 3 weeks CPT = Heat therapy and strengthening exercises.	VAS WOMAC Concentric strength of hip abductors and extensors, Follow-up = 3 weeks
Khyatee et al ³⁰ (2013) Knee pain	RCT	Exp: $n = 15$ (9M, 6F) Mean age 38.8 ± 8.55 Con: $n = 15$ (7M, 8F) Mean age 36.6 ± 9.47	Exp = BW 2 to 2.5 km/hr for 5 min, 10 days with CPT Con = CPT 10 repetitions, 3 sets/day, 10 days CPT = Strengthening exercises	VAS Quadriceps strength Follow-up = 10 days

2. BW with CPT including other gait training vs CPT including other gait training	Yong Kim et al ²⁸ (2017) Stroke	RCT	Exp: $n = 17$ Mean age 63.35 ± 7.27 Con: $n = 17$ Mean age 63.33 ± 11.60	Exp = BW with CPT 30 min, 3x/week, 3 weeks Con = CPT 30 min, 3x/week, 3 weeks CPT = functional mobility and strengthening exercises included with other gait training	Gait velocity Cadence Stride length Follow- up = 3 weeks
	El Aziz et al ³⁸ (2017) Juvenile rheumatoid arthritis	RCT	Exp: $n = 15$ (18G, 12B) Mean age 7.06 \pm 1.24 Con : $n = 15$ Mean age 7.38 \pm 1.18	Exp = BW 20 min, 3 sessions/week, 12 weeks with CPT 60 min 3 sessions/week, 12 weeks Con = CPT 60 min 3 sessions/week, 12 weeks CPT = stretching and strengthening exercises included with other gait training	Berg balance scale Overall stability Follow-up = 12 weeks
	El Basatiny et al ³⁹ (2014) Cerebral palsy	RCT	Exp: $n = 15 (14G, 16B)$ Mean age 11.98 ± 1.21 Con: $n = 15$ Mean age 12.51 ± 1.27	Exp = BW 25 min, 3 sessions/week, 12 weeks with CPT 60 min 3 sessions/week, 12 weeks Con = CPT 60 min 3 sessions/week, 12 weeks CPT = training for postural stability stretching and strengthening exercises included with other gait training	Overall stability Follow-up = 12 weeks
	Khadilkar et al ²⁹ (2011) Anterior cruciate ligament injury	RCT	Exp: $n = 15$ Mean age 25.48 ± 4.43 Con: $n = 15$ Mean age 25.88 ± 3.47	Exp = BW 10 min/day with CPT Con = CPT 20 min/day, 4 weeks CPT = strengthening exercises included with other gait training	Quadriceps and hamstring strength Step length Stride length Cadence

Follow-up = 4 weeks

	Takami et al ¹¹ (2010) Stroke	RCT	Exp: $n = 12$ (6M), Mean age 66.1 ± 6.3, Hemiplegic side (right 7) Con: $n = 12$ (5M), Mean age 66.9 ± 10.6, Hemiplegic side (right 10)	Exp = Partial body weight supported BW training on treadmill with CPT Con = Partial body weight supported forward walking (FW) training on treadmill with CPT 30 min of CPT and 10 min of walking training - either backward or forward; total 40 min, 6 x/week (3weeks) CPT = functional mobility and strengthening exercises, included with gait training	Berg balance scale Velocity Cadence Step length Follow–up = 3 weeks
	Yang et al ² (2005) Stroke	RCT	Exp: $n = 13 (10M)$ Mean age 63.38 ± 7.7 Hemiplegic side (right 8) Con: $n = 12 (9M)$ Mean age 63.42 ± 11.06 Hemiplegic side (right 8)	Exp = BW training for 30 min with CPT for 40 min, 3x/week (3 weeks). Con = CPT 40 min; 3x/week (3 weeks). CPT = functional mobility and strengthening exercises, included with other gait training	Velocity Cadence Stride length Follow– up = 3 weeks
3. BW with CPT vs CPT with other gait /physiotherapy training	Rose et al ⁴⁰ (2018) Stroke	RCT	Exp: $n = 10 (4M, 4F)$ Mean age 53.8 ± 12.1 Hemiplegic side (right 3, left 5) Con: $n = 8 (2M, 6F)$ Mean age 66.6 ± 7.3 Hemiplegic side (right 3, left 5)	Exp = BW with CPT Con = CPT with standing balance training CPT = other physiotherapy training	Berg balance scale Follow-up = 12 weeks

	Abdel aziem and El Basatiny ³⁷ (2016) Cerebral palsy	RCT	Exp: $n = 15 (14G, 16B)$ Mean age 11.63 ± 1.40 Con: $n = 15$ Mean age 11.46 ± 1.43	Step length Walking velocity Cadence Follow-up = 12 weeks	
	Walusiak et al ³⁶ (2008) Senile osteoporosis	RCT	Exp: $n = 20$ (F) Mean age 72.5 \pm 5.62 Con: $n = 17$ (F) Mean age 72.7 \pm 6.08	Exp = BW with CPT 10 min/session, 5 sessions/day x 3 weeks Con = CPT with gait training (FW) 10 min/session, 5 sessions/day x 3 weeks CPT = balance, strengthening and stretching exercises	Quadriceps strength Follow-up = 3 weeks
4. BW vs other gait training	Grobbelaar et RC al ²⁶ (2017) Parkinson's disease	Τ	Exp: $n = 16$ Mean age 72 ± 6 Con: $n = 15$ Mean age 70 ± 11	Exp = BW Con = gait training (Forward walking) 45-60min, 3 sessions/week, 8 weeks	Gait speed Cadence Stride length Double limb support Follow–up = 8 weeks
	Kim et al ³⁵ (2017) Stroke	RCT	Exp: $n = 15$ (11M, 4F), Mean age 48.27 ± 16.05, Hemiplegic side (right 5) Con: $n = 15$ (7M, 8F), Mean age 50.73 ± 13.50, Hemiplegic side (right 7)	Exp = Progressive body weight supported treadmill BW training 30min/day, 5x/week, 8 weeks Con = Progressive body weight supported treadmill FW training	Step length Stride length Single limb support Double limb support Step time Cadence

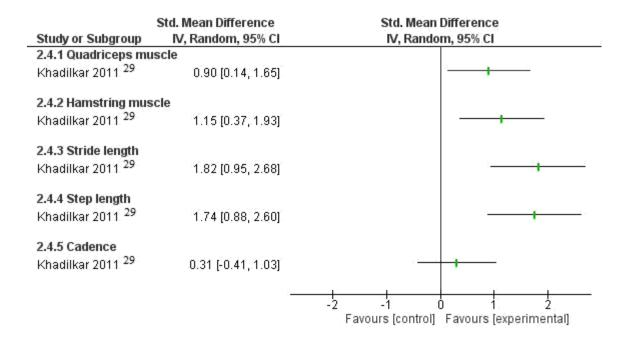
Follow-up = 8 weeks

	Kim et al ³⁴ (2014) Stroke	RCT	Exp: $n = 12$ (8M), Mean age 51.00 \pm 14.60, Hemiplegic side (right 6) Con: $n = 12$ (8M), Mean age 52.75 \pm 9.21, Hemiplegic side (right 6)	Exp = Progressive body weight supported treadmill BW training 30min/day, 6 weeks Con = Progressive body weight supported treadmill FW training	Step length Single limb support Step time Follow–up = 6 weeks
5. BW vs no intervention	Zhang et al ³³ (2014) Diabetic peripheral neuropathy	RCT	Exp: $n = 30$ (16M), Mean age 52.7 ± 6.5 Con: $n = 30$ (16M), Mean age 52.7 ± 6.2	Exp = BW Con = No intervention	Plantar pressure Follow–up =12 weeks

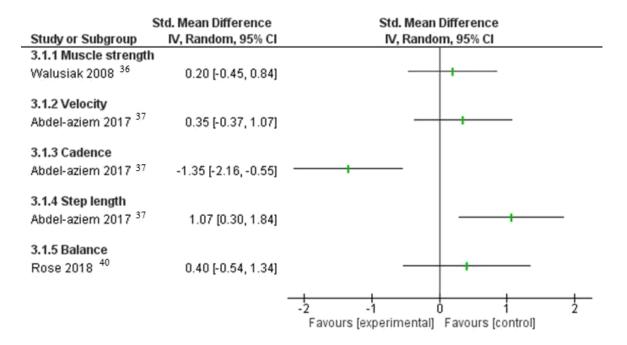
Exp = experimental group, Con = control group, M = male, F = female, n = number of participants, RCT = randomized control studies, BW = backward walking, FW = forward walking, CPT = conventional physiotherapy treatment, VAS = visual analogue scale, NPRS = numerical pain rating scale, WOMAC = Western Ontario and McMaster Universities Arthritis Index.

Based on intervention	Study/condition	1.	2.	3.	4.	5.	6.	7.	8.	9.	10	Total (0- 10)
1. BW with CPT vs CPT	Rathi et al ³¹ (2017) LBP	Y	N	Y	N	N	N	Y	N	Y	Y	5
	Rangey et al ²⁷ (2017) OA knee	N	N	N	N	N	N	N	N	Y	Y	2
	Wadhwa et al ²⁴ (2016) OA knee	Y	N	Y	Ν	N	N	Y	N	Y	Y	5
	Anadkat et al ³² (2015) OA knee	Y	Y	Y	N	N	N	Y	N	Y	Y	6
	Manisha et al ²⁵ (2015) OA knee	Y	N	Y	N	N	N	Y	N	Y	Y	5
	Rathi et al ²³ (2014) OA knee	Y	Ν	Y	Ν	N	Ν	Y	Ν	Y	Y	5
	Gondhalekar et al ⁹ (2013) OA	Y	N	Y	N	N	N	Y	N	Y	Y	5
	knee Khyatee et al ³⁰ (2013) Knee pain	Y	N	Y	N	N	N	Y	N	Y	Y	5
2. BW with CPT including other gait training vs CPT	Yong Kim et al ²⁸ (2017) Stroke	Y	Y	Y	Ν	N	Y	Ν	Ν	Y	Y	6
including other gait training	El Aziz et al ³⁸ (2017) JRA	Y	Y	Y	Ν	N	Ν	Y	Y	Y	Y	7
	El Basatiny et al ³⁹ (2014) CP	Y	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Y	6
	Khadilkar et al ²⁹ (2011) ACL	Y	Ν	Y	Ν	Ν	Ν	Y	Ν	Y	Y	5
	Takami et al 11 (2010) Stroke	Y	Ν	Y	Ν	Ν	Ν	Ν	Ν	Y	Y	4
	Yang et al ² (2005) Stroke	Y	Y	Y	Ν	Ν	Ν	Y	Ν	Y	Y	6
3. BW with CPT vs CPT with other gait /	Rose et al 40 (2018) Stroke	Y	N	Y	N	N	Y	N	N	Y	Y	5
physiotherapy training	Abdel aziem and El Basatiny ³⁷ (2016) CP	Y	Y	Y	N	N	Y	Y	N	Y	Y	7

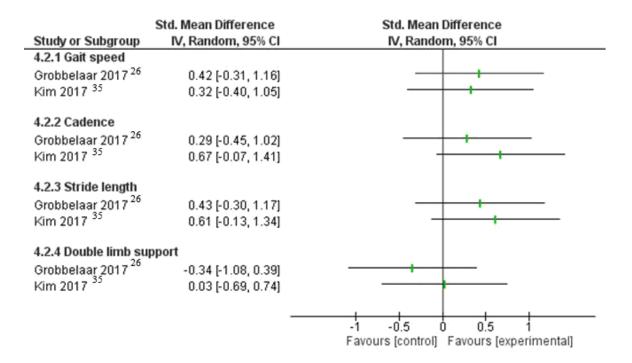
Supplementary Table 3. PEDro scale scores for included studies (n =21)

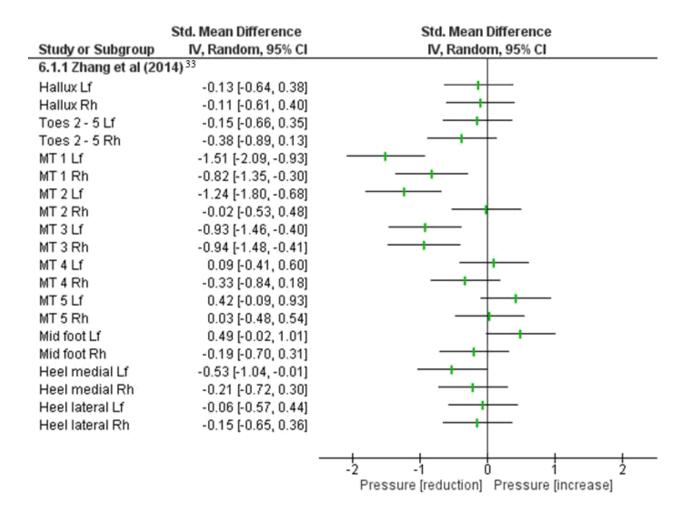

	Walusiak et al ³⁶ (2008) Senile osteoporosis	Y	N	Y	N	N	N	Y	N	Y	Y	5
4.BW vs other gait training	Grobbelaar et al 26 (2017) PD	Y	Y	Y	Y	N	Ν	Y	Ν	Y	Y	7
	Kim et al ³⁵ (2017) Stroke	Y	Y	Y	Y	Y	N	Y	N	Y	Y	8
	Kim et al ³⁴ (2014) Stroke	Y	N	Y	N	N	N	N	N	Y	Y	4
5.BW vs no intervention	Zhang et al ³³ (2014) DPN	Y	N	Y	N	N	N	Y	Y	Y	Y	6

Y = yes; N = no; LBP = low back pain; OA = osteoarthritis; ACL = anterior cruciate ligament; PD = Parkinson's disease; CP = cerebral palsy; JRA = juvenile rheumatoid arthritis; DPN = diabetic peripheral neuropathy.


1. Random allocation, 2. Concealed allocation, 3. Baseline comparability, 4. Blind subjects, 5. Blind therapist, 6. Blind assessor, 7. Adequate follow-up, 8. Intention to treat, 9. Between-group comparison, 10. Point estimate and variability.

```
Search Name: march6 2018
Date Run: 06/03/18 18:02:17.698
Description:
     Search
ΤD
               Hits
#1
   walking:ti,ab,kw (Word variations have been searched) 16075
   gait 5720
#2
#3
   backward
               1101
#4
   retro
               239
#5
    #3 and #1 119
#6
    #3 and #2 95
    #4 and #1 8
#7
#8
   #4 and #2
               -6
#9 #5 or #6 or #7 or #8 162
#10 randomized controlled trial:pt
                                    446152
#11 controlled clinical trial:pt
#12 randomized:ti,ab,kw 521534
                                  426735
                          521534
#13 placebo:ti,ab
                    192876
#14 randomly:ti,ab 169394
#15 trial:ti 210354
#16 #10 or #11 or #12 or #13 or #14 or #15 864497
#17 animals not humans 1310
#18 #16 not #17 863621
#19 #9 and #18 in Trials 118
```


Supplementary Figure 1. Search strategy (eg: Cochrane library)


Supplementary Figure 2. Standardized Mean Difference (95% confidence interval) calculated from the one study for patients with anterior cruciate ligament injury who underwent backward walking with conventional physiotherapy treatment including other gait training *vs* conventional physiotherapy treatment including for muscular strength and gait parameters.

Supplementary Figure 3. Standardized Mean Difference (95% confidence interval) calculated for patients suffering from senile osteoporosis, cerebral palsy and stroke who underwent backward walking with conventional physiotherapy treatment *versus* conventional physiotherapy treatment with other gait/physiotherapy training. One study for muscle strength, one study for velocity, cadence and step length, and one study for balance.

Supplementary Figure 4. Standardized Mean Difference (95% confidence interval) calculated from the two studies of patients with Parkinson's disease and who suffered stroke and who underwent backward walking *vs* other gait training for improving gait parameters

Supplementary Figure 5. Standardized Mean Difference (95% CI) calculated from the one study for patients with diabetic peripheral neuropathy who underwent backward walking *vs* no intervention to relieve plantar pressure.

References:

- 1. Rose D, De Mark L. Backward walking training to improve mobility in acute stroke: A pilot study. *Arch Phys Med Rehabil* 2013; 94: e36.
- 2. Alghadir A, Anwer S. Effect of retro and forward walking on quadriceps muscle strength, pain, function, and mobility in patients with knee osteoarthritis: a protocol for a randomized controlled trial. *BMC Musculoskelet Disord* 2016; 17: 161.
- 3. Michaelsen SM, Ovando AC, Romaguera F, et al. Effect of backward walking treadmill training on walking capacity after stroke: a randomized clinical trial. *Int J Stroke* 2014; 9: 529–532.
- 4. Weng C, Wang J, Pan X, et al. Effectiveness of backward walking treadmill training in lower extremity function after stroke. *Zhonghua Yi Xue Za Zhi* 2006; 86: 2635–8.
- 5. Davalos-Bichara M, Zuniga MG, Agrawal Y, et al. Forward and backward locomotion in individuals with dizziness. *Gait Posture* 2014; 40: 499–503.
- Law RYW, Herbert RD. Warm-up reduces delayed-onset muscle soreness but cool-down does not: a randomised controlled trial. *Aust J Physiother* 2007; 53: 91–95.