Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Treatment/Med	lication Adhere	nce					
Albert et al., 1999	EF general, cognitive flexibility	Task	57	HIV positive, low- income sample; mean age 44 years; U.S.	C.S.	Patients <1 SD below mean Executive Function (EF) score had worse adherence to correct HIV pill dispensing; scores on cognitive flexibility task N.S. with HIV pill dispensing.	8
Boyer et al., 2012	EF general	Task	169	Patients diagnosed with schizophrenia; mean age 36.6 years; France	C.S.	Association between neurocognition and awareness of symptoms; awareness of symptoms was associated with better adherence; neurocognition N.S. with nonadherence (direct path).	6
Casaletto et al., 2016	Working memory, cognitive flexibility, EF general	Task	50	Patients diagnosed as HIV+ or bipolar disorder; mean age 47.1 years; U.S.	L.	Executive dysfunction was a significant moderator between mood and treatment adherence; WM, cognitive flexibility and general EF N.S. with adherence.	7
Contardo et al., 2009	Working memory, neurocognitiv e deficits, EF general	Task	97	HIV positive patients undergoing antiretroviral treatment; mean age 44.5 years; U.S.	C.S.	15 minute recall rest, action response and event cue subscales of the memory for intentions screening test (MIST) were significantly correlated with adherence; MIST subscale, Hopkins verbal learning test (verbal memory), and Trail Making tests A (EF general) and B (WM) were N.S. with medication adherence.	7

Table S1. Description of Included Articles on the Relationship between Executive Functioning and Health Behavior

Α	uthor	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
	l-Missiry et ., 2015	Working memory, EF general	Task	109	Patients diagnosed with schizophrenia; mean age 32.2; Egypt	L.	Diminished WM ability and EF were associated with an inability to manage medication adherence.	8
	ttenhofer et ., 2010	EF general, attention	Task	91	HIV positive adults; mean age 42.5 years; U.S.	L.	Diminished EF was associated with diminished medication adherence; cognitive flexibility and attention were N.S. predictors of medication adherence.	9
	ttenhofer et ., 2009	Working memory, cognitive flexibility, EF general	Task	431	HIV positive adults prescribed self- administering medication; mean age ranged from 40.49 years to 53.03 years across groups; U.S.	C.S.	Processing speed and general EF were associated with medication adherence among older adults; cognitive flexibility and WM in older adults, and all EF measures among younger adults were N.S. with medication adherence.	11
	elb et al.,)10	Working memory, cognitive flexibility, inhibitory control	Task	151	Participants with recent kidney transplant and matched controls; mean age 50.07 years (Kidney transplant only); Canada	L.	All EF measures N.S. with medication adherence.	12
	inkin et al., 002	Working memory, cognitive flexibility, EF general	Task	137	HIV-seropositive adults; 25% were at least 50 years of age; mean age 44.06 years; U.S.	L.	EF composite scores and attention were correlated to medication adherence; all other EF measures were N.S. with medication adherence.	9

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Hinkin et al., 2004	EF composite, working memory, attention composite	Task	148	HIV positive adults on self-administered antiretroviral regimen; 26% of participants were over 50 years old; mean age 44.2 years; U.S.	C.S.	Memory and impairments in EF were correlated with worse treatment adherence; attention N.S. with medication adherence.	10
Jarboe & Schwartz, 1999	Cognitive flexibility, EF general	Task	8	Schizophrenia patients; mean age 23 years; U.S.	C.S.	Significant association between medication compliance and patients' cognitive shifting; Wisconsin Card Sorting Task (WCST) was N.S. with medication adherence.	б
Jónsdóttir et al., 2013	Working memory, EF general, insight	Task, Q'aire	255	Patients recruited from psychiatric departments; mean age among schizophrenia patients was 33.2 years and bipolar 38.8 years; Norway	C.S.	Higher EF composite score was associated with lack of adherence in schizophrenic group. There was a relationship between insight impairments and lower adherence; No statistically significant differences in bipolar group for WM or EF composite for adherence.	12
Kim et al., 2006	Working memory, cognitive flexibility, attention, EF general	Task	92	92 patients with schizophrenia from inpatient and outpatient clinics; mean age 33.2 years; Korea	C.S.	Better WCST scores associated with better attitude for medication adherence; Attention, cognitive shifting, and EF composite N.S. with medication adherence.	7
Mann et al., 1999	Neuro- cognitive Deficits	Task	25	HIV outpatients; mean age 39.9 years; U.S.	C.S.	Better EF composite scores were significantly associated with better medication compliance; No non-significant findings reported.	5

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Martinez-Aran et al., 2009	Cognitive flexibility, inhibitory control	Task	106	Enrolled from Bipolar Disorders Program of a hospital clinic; mean age across groups ranged from 39.1 to 39.9 years; Spain	L.	Higher Stroop color-word task (inhibitory control) score, Digit forwards/backwards score, and Trail Making Test A&B scores were all significant predictors of medication adherence; all EF measures were N.S. with WCST.	13
Robinson et al., 2002	Cognitive flexibility, EF general	Q'aire	112	Patients with first- episode schizophrenia and schizoaffective disorder; mean age ranged from 24.7 to 25.9 years across groups; U.S.	L.	Lower EF predicted poorer medication adherence. Executive dysfunction significantly predicted medication discontinuation after response to the first relapse; Cognitive flexibility N.S. with medication adherence.	11
Solomon & Halkitis, 2008	Cognitive flexibility	Task	213	HIV positive males undergoing antiretroviral treatment; 100% reported sexual intercourse with a man in the past year; 36% with annual income less than \$10,000; mean age 42 years; U.S.	L.	At baseline analysis, there was a significant correlation between better cognitive flexibility and better adherence to treatment; No significant results at month 10 analysis of cognitive flexibility.	9
Streeter et al., 2008	Inhibitory control	Task	44	Cocaine dependent individuals; mean age ranged from 45.12 to 41.88 years across groups; U.S.	C.S.	Color naming and interference portions of the Stroop Task (inhibitory control) were significantly different between treatment completers and non-completers; Word-reading subtest (inhibitory control) N.S. with treatment.	8

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Thames et al., 2013	Working memory, Cognitive Flexibility	Task	101	HIV positive individuals; mean age ranged from 47.6 to 50.1 across groups; U.S.	L.	Poor performance in learning and memory predicted worse medication management capability; Cognitive flexibility and processing speed N.S. with medication management.	11
Thames et al., 2011	Working memory, cognitive flexibility, inhibitory control, EF general	Task	51	HIV positive individuals; mean age ranged from 33.8 to 59.4 years across groups; U.S.	C.S.	In older group, deficits in WM and EF composite were significantly correlated with poor adherence; All measures N.S. with adherence in younger group. Cognitive flexibility, and processing speed N.S. with adherence in older group.	9
Verdejo-García et al., 2012	Working memory, cognitive flexibility, inhibitory control, EF general, reasoning, decision- making	Task	131	Cocaine-dependent individuals undergoing treatment; mean age 34.3 years; Spain	L.	Low scores on the revised strategy application test (inhibitory control) predicted shorter adherence time; WM, cognitive flexibility, EF general, reasoning, and decision making were all N.S. with treatment adherence after applying Bonferroni correction.	10
Verdoux et al., 2002	Working memory, cognitive flexibility, attention, inhibitory control	Task	35	Patients with psychosis; mean age 32.1 years; France	L.	Poorer cognitive flexibility predicted better adherence; WM, inhibitory control, attention were all N.S. in predicting medication adherence.	9

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Waldrop- Valverde et al., 2006	Working memory, cognitive flexibility	Task	57	HIV positive who used injected drugs in the past 12 months; mean age 42.75 years; U.S.	C.S.	No significant results; EF measures N.S. in predicting medication adherence.	5
Nutrition/Dieta	ry Behaviors						
Allan et al., 2010	Cognitive flexibility, inhibitory control, planning	Task	62	University students; mean age 20.4 years; Scotland	C.S.	Poorer inhibitory control led to increased chocolate consumption; Cognitive flexibility and planning N.S. with chocolate consumption.	6
Allan et al., 2011	Cognitive flexibility, inhibitory control	Task, Q'aire	S1: 49; S2: 52	University students; mean age study 1: 22 years and mean age study 2: 21 years; Scotland	C.S.	Study 1: Cognitive flexibility was associated with eating less fruits and vegetables and snacking more than intended; inhibitory control N.S. with intention-behavior gap for snacking or fruit and vegetable consumption; Study 2: Lower inhibitory control was associated with larger intention-behavior gap for snacks.	7
Allan et al., 2015	EF general	Q'aire	128	Coffee shop customers; mean age 23.3 years; Scotland	C.S.	Stronger EF lead to greater calorie reduction decisions of snacks with the intervention; EF N.S. with high calorie drink decisions.	8
Allom & Mullan, 2014	Working memory, inhibitory control	Task	115	University students; mean age 19.79 years; Australia	C.S.	Poor inhibitory control was positively correlated with saturated fat intake; greater updating ability was related to higher consumption of fruit and vegetables; Updating N.S. with saturated fat intake; inhibitory control N.S. consumption of fruits and vegetables.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Balodis et al., 2013	Inhibitory control	Task, Brain imaging	34	Obese adults with and without binge-eating disorder and a lean adult comparison group; mean age 38.4 years; U.S.	C.S.	Poor inhibitory control was correlated with impaired dietary restraint among those with binge eating disorders; Inhibitory control N.S. with dietary behavior among lean subjects.	7
Blackburne et al., 2016	Inhibitory control	Task, Brain imaging Q'aire	52 ,	Obese adults; mean age 36.48 years; Australia	L.	No significant results; Inhibitory control was N.S. with improvement in dietary behavior.	10
Boon et al., 1997	Attention	Task, Q'aire	55	Female university students; mean age ranged 21.1 to 21.6 years across groups; Netherlands	C.S.	No significant results; cognitive distraction and restraint N.S. with amount of ice cream consumed.	9
Calvo et al., 2014	Working memory, cognitive flexibility, inhibitory control, EF general	Task, Q'aire	62	College students; mean age ranged from 21.06 to 21.2 years across groups; U.S.	C.S.	Poor WM and slower inhibitory control were correlated with uncontrolled eating; general EF, decision making, and cognitive shifting N.S. with uncontrolled eating.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design	Results	MQS c
Cohen et al., 2011	Working memory, cognitive flexibility, EF general, attention	Task, Brain imaging	139	Lean and overweight adults; mean age ranged from 16.1 to 15.2 years across groups; U.S.	C.S.	Lean group performed significantly better on Stroop test (inhibitory control), Digital Span Sorting Task (WM), WCST (WM), and Trail Making Test (EF general). Only lower WCST scores were associated with low quality food intake. No other significant relationship between other EF measures and food choice among lean and obese.	10
Dempsey et al., 2011	Inhibitory control	Task	125	Obese adults with and without ADHD; mean age 43.7 years; U.S.	L.	There were differences between Attention- Deficit/Hyperactivity Disorder (ADHD) and non-ADHD groups on Barratt impulsivity scale and EI-disinhibition measure (inhibitory control); Stroop test and EI-cognitive restraint measure were N.S. between ADHD and non-ADHD groups.	8
Dingemans et al., 2015	Cognitive flexibility	Task	75	Females diagnosed with binge-eating disorder; mean age ranged from 32.2. to 39.3 years across groups; Netherlands	C.S.	Set-shifting was a predictor for loss of control over eating; Cognitive flexibility was N.S. with uncontrolled eating.	8

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Duchesne et al., 2010	Working memory, cognitive flexibility, inhibitory control, planning, problem solving	Task	76	Obese patients with eating disorders and control group; mean age ranged from 33.29 to 35.42 years across groups; Brazil	C.S.	Reduced cognitive flexibility/set-shifting, WM, and problem-solving associated with increased binge-eating; Inhibitory control and planning were N.S. with binge-eating behavior.	6
Frankort et al., 2015	EF general	Brain imaging, Q'aire	34	Female undergraduate students: mean age ranged from 19.8 to 20.2 years across groups; Netherlands	C.S.	Higher anterior PFC activation predicted higher chocolate intake. Restraint scale (inhibitory control) was N.S. with chocolate intake.	7
Galioto et al., 2012	Working memory, cognitive flexibility, EF general	Task	131	Morbidly obese individuals; mean age 42 years; U.S.	C.S.	No significant results; Both groups showed high rates of cognitive impairment, but there were no significant differences in EF between groups.	6
Graham et al., 2014	Cognitive flexibility, inhibitory control, decision making	Task, Q'aire	78	Adult obese men and women; mean age 36.2 years; U.S.	L.	Lower cognitive restraint was associated with greater food intake; All other EF measures N.S. with food intake.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Hall et al., 2015	EF general	Task	79	Introductory psychology participant pool with 81% normal weight and 19% were overweight or obese; mean age 18.71 years; Canada	C.S.	Weaker EF predicted higher grams of snack food intake. Two-way association of restrained vs unrestrained eating and EF composite.	8
Hall, 2012	Inhibitory control, EF general	Task	208	Mean age 45.21 years; Canada	L.	Higher inhibitory control lead to lower fatty food consumption. Higher composite EF lead to lower fatty food consumption; all EF measures were N.S. with fatty food consumption.	10
Hall et al., 2008	Inhibitory control	Task	121	Undergraduate university students; mean age 22.24 years; Canada	L.	Better Go/No-Go task scores (inhibitory control) predicted improved dietary behavior; two-way interaction between EF and behavior intention prediction dietary behavior.	9
Hall et al., 2014	Inhibitory control	Task	88	Undergraduate university students; mean age 19.5 years; Canada	C.S.	Strong inhibitory control lead to lower consumption of snack food in facilitation group; Measures of EF N.S. with eating behavior in other groups.	7
Haynes et al., 2015	Inhibitory control	Task	134	First-year female psychology university students; mean age 19.95 years; Australia	C.S.	No significant results; Inhibitory control N.S. to food temptation.	8

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Hofmann et al., 2014	Inhibitory control	Task	204	73% of participants were university students. Mean age 25.24 years; Germany	L.	Higher inhibitory control predicted more attempts to resist food desires for healthy food. Lower inhibitory control predicted a higher likelihood to enact food desires for unhealthy food. Lower inhibitory control predicted higher weight loss; Inhibitory control did not moderate the relationship between dietary restraint and desire strength, nor dietary restraint and conflict relationship.	8
Hogenkamp et al., 2015	Inhibitory control	Task	30	Women 12 years after bariatric surgery. Mean age: 49 years; Sweden	C.S.	Lower inhibitory control lead to greater weight gain. Poor responders took significantly longer on go/no-go task (inhibitory control); Stroop had no significant findings.	7
Houben et al., 2016	Working memory	Task	50	Overweight individuals who were motivated to lose weight with BMI higher than 25; mean age ranged from 36.08 to 37.62 years across groups; Netherlands	L.	WM training successfully reduced emotional eating and psychopathological eating-related concerns in overweight participants. WM training also reduced food intake among highly restrained eaters and reduced eating related thoughts, overeating in response to negative emotions, and food intake among participants with strong dietary restraint goals; WM training was not associated with external eating, food intake, and body weight.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Israel et al., 2015	Working memory	Task, Brain imaging	46	Women with eating disorders; mean age ranged from 20.47 to 24.81 years across groups; Canada	C.S.	Greater activation in the right premotor cortex and right superior frontal gyrus of the dorsolateral prefrontal cortex in women with eating disorders. Poor WM was correlated with binge-eating disorders rather than restriction disorders; In some conditions of the n-back test using 0-back and 2-back, results were N.S. with eating disorders.	8
Kelly et al., 2013	Inhibitory control, EF general	Task, Q'aire	116	Undergraduate women; mean age 19 years; U.S.	C.S.	No significant results; EF, after controlling for depression, anxiety, body mass, general intelligence, and psychotropic medication use, was not related to binge-eating behaviors.	9
Knolle- Veentjer et al., 2008	Cognitive flexibility, planning, problem solving	Task	52	Patients diagnosed with schizophrenia and controls; mean age ranged from 32 to 34 years across groups; Germany	C.S.	Positive relationship between overall EF, Behavioural Assessment of the Dysexecutive Syndrome, and the percentage of positive decisions in favor of delaying gratification.	6
Limbers & Young, 2015	Working memory, cognitive flexibility, inhibitory control	Q'aire	240	Undergraduate students who were psychology majors; 25.4% overweight, and 7.9% obese; mean age 19.03 years; U.S.	C.S.	Initiation Skills predicted fruit and vegetable consumption. Stronger inhibitory control associated with less consumption of high fat foods in past 7 days; All other EF scales were N.S. predictors of fruit and vegetable intake. Initiate, cognitive shift, and WM were N.S. in consuming foods high in saturated fats.	6

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design	Results	MQS c
Lowe et al., 2014	Inhibitory control	Task	21	Undergrad psychology students who reported strong cravings for both chocolate and potato chips; mean age 21.1 years; Canada	L.	Stroop interference (inhibitory control) difference score predicted food consumption; Go/No-Go and Stop Signal (inhibitory control) were N.S. with food consumption.	6
Lyu & Jackson 2016	, Inhibitory control	Brain imaging	44	Women with binge- eating disorder; mean age 19 years; China	C.S.	Less hippocampus activation (lower inhibitory control) predicted higher chocolate consumption.	7
Manasse, Espel, et al., 2015	Inhibitory control	Task	74	Treatment-seeking overweight and obese women with and without binge eating disorder; mean age ranged from 36.84 to 51.09 years across groups; U.S.	C.S.	At lower levels of hedonic hunger, worse inhibitory control was associated with increased likelihood of categorization in the binge eating group; At higher levels of hedonic hunger, inhibitory control N.S. with the likelihood of categorization in the Binge Eating group.	6
Manasse et al., 2016	Inhibitory control	Task, Q'aire	17	Patients who endorsed at least 12 objective binge eating episodes in the past 3 months; BMI ranged from 21.2 to 50.10; mean age 39.59 years; U.S.	L.	Individuals with higher levels of urgency experienced more gradual reductions in binge frequency during and after treatment. Participants with greater negative urgency had marginally fewer binge episodes at baseline; Inhibitory control N.S. with binge eating size or frequency, or symptom change over time.	8

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design	Results	MQS c
Manasse, Forman, et al., 2015	Working memory, cognitive flexibility, problem solving, Inhibitory control	Task	74	Overweight and obese women seeking behavioral treatment for either weight loss or binge eating; mean age ranged from 45.06 to 51.09 years across groups; U.S.	C.S.	The binge eating group, when compared to the control group, displayed significantly steeper monetary discounting on the Delayed Discounting Task, and showed inferior performance on the Tower Task (problem- solving); The two groups did not differ on other EF tests.	7
Manasse et al., 2014	Working memory, cognitive flexibility, inhibitory control, planning	Task	80	Overweight and obese women seeking entry into a behavioral weight loss trial; mean age ranged from 47.77 to 53.31 years across groups; U.S.	C.S.	The loss-of-control eating group performed worse on the N-back (WM), tower task (planning) and made more errors on the color- word interference task (inhibitory control); Performance of the two groups did not differ on the delayed discounting task (cognitive flexibility) or in number of perseverative errors on the exclusion task (cognitive flexibility).	7
Mullan et al., 2014	Inhibitory control	Q'aire	154	University undergraduate students; mean age 20.3 years; Australia	L.	Barratt Impulsiveness Scale (BIS) was positively correlated with saturated fat consumption. The Consideration of Future Consequences Scale (CFC) was positively correlated with fruit and vegetable consumption; CFC was N.S. with saturated fat consumption. BIS N.S. with fruit and vegetable consumption.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Perpiñá et al., 2017	Cognitive flexibility, inhibitory control, decision making	Task	152	Participants with eating disorders; mean age ranged from 21 to 48 years across groups; Spain	C.S.	In the WCST (cognitive flexibility), all of those with eating disorders had lower scores than the healthy controls. Neuropsychological performance and eating or obsessive symptoms N.S. in the Eating Assessment Task.	8
Rollins et al., 2010	Inhibitory control	Q'aire	24	Non-obese, female participants; mean age 31.5 years; U.S.	C.S.	EF N.S. in predicting energy consumption.	6
Sims et al., 2014	Cognitive flexibility, inhibitory control	Task	47	Obese African- Americans; mean age 45.7 years; U.S.	C.S.	Lower inhibition associated with greater emotional eating and snacking on sweets; Cognitive flexibility N.S. with eating behavior.	7
Spinella & Lyke, 2004	Inhibitory control	Q'aire	112	Mean age 25.1 years; U.S.	C.S.	Cognitive deficits in inhibitory control were associated with poorer eating behavior.	7
Steadman & Knouse, 2016	Inhibitory control	Task, Q'aire	44	Undergraduate students; mean BMI of 22.4; mean age 19.2 years; U.S.	C.S.	Inhibitory control and impulsivity were N.S. with ADHD and binge eating behavior.	7
Tuulari et al., 2015	Inhibitory control	Brain imaging	41	Morbidly obese participants with matched controls; mean age ranged from 41.4 to 44.9 years across groups; Finland	C.S.	Normal weight subjects showed stronger activations than obese subjects in bilateral dorsal caudate nuclei and anterior cingulate cortex. Correspondingly, obese subjects had greater activations in the bilateral posterior cingulum.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Wang et al., 2016	EF general	Brain imaging	24	University students; mean age ranged from 20.47 to 21.83 years across groups; China	C.S.	Restrained eaters showed activation in brain areas associated with visual processing, attention, reward, and cognitive control. Activation in measured brain areas was N.S. for unrestrained eaters.	6
Witbracht et al., 2012	Decision making	Task	29	Women with BMI range 28-37; age range 20-45 years; U.S.	L.	Greater decision making predicted higher loss of body weight mass and higher loss of body fat mass; Decision making N.S. with lean mass lost.	9
Wong & Mullan, 2009	Inhibitory control, planning	Task	96	University students; mean age 19.46 years; Australia	C.S.	Planning predicted unique variance in eating breakfast behavior; Inhibitory control N.S. in predicting eating breakfast behavior.	5
Risky Driving							
Badenes et al., 2014	Working memory, attention	Task	100	Multiple sclerosis patients with matched healthy controls; mean age 39 years; Spain	C.S.	WM and attention predicted an increase in driving risk among MS patients.	8
Barkley et al., 2002	Working memory, inhibitory control, cognitive flexibility	Task	169	Young adults with ADHD; mean age 21 years; U.S.	C.S.	Inhibitory control was a mediator between ADHD and amount of self-reported accidents. Inhibitory control was associated with self- reported traffic violations; Cognitive flexibility and WM were N.S. with driving ability.	9

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Bioulac et al., 2016	Cognitive flexibility, inhibitory control, planning	Task	57	Clinical patients with ADHD and healthy controls; mean age ranged from 36.2 to 37.2 years across groups; France	C.S.	Scores on the Digital Symbol Substitution Test (speed of information processing), Stroop Color- Naming Test (inhibitory control), and Trail Making Test (cognitive flexibility) were associated with risky driving among those with ADHD; Scores on tower of London and WCST were N.S. with driving ability among ADHD group.	7
Brown et al., 2016	Inhibitory control, decision making, attention	Task	138	Members of an addiction recovery program; age range 19- 39 years; Canada	C.S.	Lower decision-making and inhibitory control associated with risky driving among speeding group. EF measures were all N.S. with control group and mixed group. Speed group N.S. with attention measure. Risky Driving N.S. with decision making and inhibitory control among the DWI group.	9
Bunce et al., 2012	Working memory, cognitive flexibility, inhibitory control	Task	24	Young and old drivers from west London; mean age 21.9 years among younger group; United Kingdom.	C.S.	In older drivers, WM and inhibitory control were associated with driving performance. WM, cognitive flexibility, and inhibitory all N.S. in younger drivers.	7
Chein et al., 2011	Inhibitory control	Task, Brain imaging Q'aire	26	Mean age among young adults: 15.6 years and among adults: 20.6 years; U.S.	C.S.	Brain areas associated with cognitive control were less strongly recruited by adolescents than adults, but activity in the cognitive control system did not vary with social context. Presence of peers increases adolescent risk taking in driving by heightening sensitivity to the potential reward value of risky decisions.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Chen et al., 2013	Cognitive flexibility	Task	16	Iowa city residents; mean age 46.3 years; U.S.	C.S.	Better cognitive flexibility was associated with less risky driving.	7
Dedovic et al., 2016	Cognitive flexibility, inhibitory control	Task, Brain imaging	119	Males and females convicted for first DWI offense and matched control group; mean age ranged from 29.7 to 33.0 years across groups; Canada	C.S.	Lower cortical thickness was associated with increased odds of DWI status among males who had not engaged in very hazardous pattern of alcohol misuse in the previous 12 months; Measures of inhibitory control were N.S. with risky driving among any females or male controls.	9
Dehning et al., 2014	Working memory, EF general	Task, Brain imaging	70	Patients diagnosed with multiple sclerosis; mean age 14 years; U.S.	C.S.	WM and EF general were N.S. with risky driving in MS patients.	8
Guinosso et al., 2016	Cognitive flexibility, inhibitory control, EF general	Task	74	Drivers recruited by fliers in public places, social media, and driving schools. All drivers were between the ages of 16 and 24 years; U.S.	C.S.	Stroop Color-Word score (inhibitory control) associated with variability in velocity and variability in acceleration; WCST (cognitive flexibility) and EF general N.S. with velocity and acceleration. Stroop and alerting tasks N.S. in predicting variability in lane position and steering.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Haikonen et al., 1998	Inhibitory control, executive function composite	Task	26	Patients with brain damage with no clear neurological or neuropsychological restriction on driving a car; experienced drivers with more than 50,000 km of total driving experience; Finland	C.S.	Stroop (inhibitory control) and Spatial Sequence Learning Test (EF composite) correlated with increased number of long glances > 1.5 seconds; Stroop Color-Word Naming errors and Spatial Sequence Learning Test scores N.S. with percentage of the number of long glances > 2.0 seconds. Trail Making scores were N.S. with >1.5 second glances or >2.0 second glances.	7
Hargrave et al., 2012	Cognitive flexibility, EF general	Task	76	Participants in a driving rehabilitation program at a rehabilitation hospital; mean age ranged from 55.4 to 58.4 years across groups; U.S.	C.S.	Lower scores on Trail Making Test Part B (cognitive flexibility) was a predictor of increased risky driving behavior in both groups; EF composite scores not predictor for risky driving for either group.	8
Hennig et al., 2014	Working memory, cognitive flexibility, inhibitory control	Task	52	Patients at the UConn Health Program diagnosed with Huntington's disease; mean age ranged from 44.95 to 47.26 years across groups; U.S.	C.S.	Low scores on the neuropsychiatric tests (WM, cognitive flexibility, inhibitory control) associated with increased risky driving.	6
Jackson et al., 2013	Working memory, attention, EF general	Task	19	Professional drivers; mean age 45.3 years; Australia	C.S.	Psychomotor vigilance test (attention) associated with sleep deprivation affecting driving performance; Digital symbol substitution test (WM) and the Stroop interference score (EF composite) N.S. with driving performance.	5

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Jäncke et al., 2008	EF general	Brain imaging	20	All participants were healthy males; mean age 24.8 years; U.S.	C.S.	Decreased neurophysiological activation in areas of lateral prefrontal cortex associated with EF was associated with fast, impatient driving associated.	5
León- Domínguez et al., 2017	Cognitive flexibility, inhibitory control, planning, attention	Task	270	Drivers with mean years of holding a driver's license 15.29 years; mean age of total sample 36.9 years; Spain	C.S.	Drivers which had not lost any points (controls) took longer to detect the target in attention tests than drivers with partial or total point loss (unsafe drivers). Controls had fewer type III errors in the Tower of Hanoi Task (measures planning and cognitive flexibility). On the Stroop test (inhibitory control), errors and reaction time were similar across groups.	9
Lincoln & Radford, 2008	Working memory, attention, EF general	Task	34	Multiple sclerosis patients living within 50 mile radius; mean age 46 years; United Kingdom	C.S.	Significant relationship between subjects who failed the road test and those that had worse scores on the stroke drivers screening assessment (attention), road sign recognition (EF composite), Stroke Drivers Screening Assessment dot cancellation positives (attention), AMIPB figure copy and AMPIB design learning interference (WM); Other cognitive tests N.S. between groups.	6

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
López-Ramón et al., 2011	Cognitive flexibility, inhibitory control, attention	Task, Q'aire	55	All subjects over 18 years of age, having a driving license, and reporting a driving frequency of no less than twice a week during the last 2 years; mean age 42.21 years; Argentina	C.S.	Worse attention (via self-report) led to committing more errors, slower performance and lower response to driving cues (and lead to higher risky driving); Flanker task N.S. with attentional errors.	7
Lundqvist et al., 1997	Working memory, cognitive flexibility, EF general	Task	58	Patients with traumatic head injury or subarachnoidal hemorrhage; mean age 44.1 years; Sweden	C.S.	Lower WM, cognitive flexibility, and EF general predicted riskier driving on all measures.	7
Marcotte et al., 2004	Working memory, EF general, attention, memory	Task	60	Subjects had driven an automobile within the last year with current license; mean age 42 years; U.S.	C.S.	Higher EF composite predicted safer driving.	8
Pope et al., 2016	EF general	Q'aire	58	All participants had a valid driver's license, and were current drivers; mean age ranged from 19.69 to 71.66 across groups; U.S.	C.S.	Higher scores on the Global Executive Composite (GEC) were associated with higher frequency of distracted driving behaviors. Higher global executive difficulty was related to reporting more frequent engagement in distracted driving behaviors.	5

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design	Results	MQS c
Rike et al., 2014	EF general	Task	143	Participants were stroke or TBI patients with current driver's license; mean age ranged from 47.9 to 58.2 years across groups; Norway	L.	EF scores in behavior regulation, metacognition and global composite predicted premorbid driving behaviors including violations, mistakes, inattention, and inexperience; all EF measures were N.S. with passing vs. failing the driving test.	11
Roca et al., 2013	Attention	Task	38	Volunteer participants all had a valid driver's license and normal or corrected-to-normal vision; mean age of 22 years; United Kingdom	C.S.	Lower attentional score predicted lower braking distance. Greater influence of spatial cues in attention shifting predicted fewer crashes; Approach speed had no significant predictor. Attention N.S. with number of crashes.	6
Ross et al., 2015	Working memory, inhibitory control	Task	38	Participants had a driver's license and a maximum of 1 year driving experience; mean age 19.03 years; Belgium	C.S.	Decreased response inhibition predicted increased risky driving and WM performance predicted safer driving.	6
Ross et al., 2016	Inhibitory control	Task	20	Participants had a driver's license and a maximum of 2 years driving experience; mean age 21.85 years; Belgium	C.S.	Lower inhibitory control scores associated with increased speeding, but only in the presence of a peer passenger; High scores in inhibitory control N.S. Inhibitory control N.S. predictor of risky driving in lone drivers.	6

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design	Results	MQS c
Shanmugaratna m et al., 2010	EF general, Working memory	Task	55	Combined sample of university students and older adults; age range for younger group 19- 36 years, age range for older group 44-82 years; U.S.	C.S.	Increased scores on EF measure predicted lower risky driving for collisions, traffic light violations, and speeding violations. Processing speed N.S. for all risky driving behaviors. EF general N.S. in predicting lane position, time to collision, center-line crossings, failures to scan, or reaction time to popups.	8
Starkey & Isler, 2016	Working memory, inhibitory control, planning, attention	Task	32	Participants had a driver's license for at least 6 months; mean age 38.91 years; New Zealand	C.S.	Better WM was associated with self-reported risky driving behavior; Inhibitory control, planning, attention N.S. with risky driving behavior.	7
Tabibi et al., 2015	Working memory, cognitive flexibility, inhibitory control	Task	107	University students and staff; mean age 30.2 years; Iran	C.S.	Poor inhibitory control predicted worse driving scores and increase in driving error and in driving violations; WM, cognitive flexibility, and reaction time N.S. with driving errors/violations.	7
Thames et al., 2013	Working memory, attention	Task	68	HIV positive participants, mean age ranged from 49.0 to 50.1 years across groups; U.S.	L.	Poor baseline of speed of processing associated with deficit in driving ability; Learning, memory, and attention N.S. with driving ability.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Wong et al., 2015	Working memory, cognitive flexibility, inhibitory control	Task	75	Licensed drivers; mean age 24.45 years; Australia	C.S.	Cognitive shifting and inhibitory control were associated with driving lapses; WM N.S. with driving lapses.	6
Tobacco							
de Ruiter et al., 2012	Inhibitory control	Task, Brain imaging	57	All male; problems gamblers, smokers, and healthy participants; mean age ranged from 33.8 to 35.3 years across groups; Netherlands	C.S.	Differences in inhibitory control were N.S. for all groups.	9
Dinn et al., 2004	Cognitive flexibility, inhibitory control, planning	Task	139	University psychology students; mean age 18.6 years; U.S.	C.S.	Lower inhibitory control was associated with a greater likelihood to smoke; No significant findings for set-shifting and planning with smoking.	7
Flaudias et al., 2016	Working memory, cognitive flexibility, inhibitory control	Task	134	Current smokers seeking a smoking cessation program, with ages between 18 and 60; France	C.S.	Better scores on the N-back test (updating) associated with more moderate smoking. Poorer inhibitory control associated with heavier smoking; WM and Stroop N.S. with smoking.	7

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design	Results	MQS c
Holmes et al., 2016	EF general, risk taking	Q'aire	1015	Native English speakers from Harvard University, Massachusetts General Hospital, and surrounding communities; mean age 21.38 years; U.S.	C.S.	Lower EF led to reduced cortical thickness, and lower cortical thickness predicted increased risk of maladaptive behaviors, including smoking. Lower EF composite N.S. with substance abuse.	6
Kahalley et al., 2010	Working memory, attention	Q'aire	8383	Childhood cancer survivors who became smokers; mean age at baseline: 23.9 years; U.S.	L.	Dysfunction in memory and emotional regulation associated with increased smoking. Survivors with attentional problems were more likely to be current smokers; Task efficiency and organizational problems were N.S. in predicting tobacco use.	9
Kräplin et al., 2015	Inhibitory control	Task, Q'aire	119	Problematic gamblers, nicotine dependent and problematic gamblers, nicotine dependent group, and healthy controls; mean age ranged from 25.69 to 31.31 years across groups; Germany	C.S.	Comorbid pathological gambling and nicotine dependent samples shared deficits in inhibitory control. Some differences in choice vs response impulsivity by group.	9
Krönke et al., 2015	Inhibitory control	Task, Brain imaging	20	Volunteer smokers and ex-smokers recruited; mean age ranged from 23.6 years to 25.7 years across groups; Germany	C.S.	Ex-smokers demonstrated superior cognitive control when compared with smokers. Inferior cognitive inhibition led to a greater likelihood to smoke. Inhibitory control acted as a mediator in smoking behavior.	6

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Loughead et al., 2016	Inhibitory control, EF general, attention	Task	213	Current smokers seeking treatment; mean age 43.28 years; U.S.	L.	No effect of cognitive training on quit rates. Neither baseline performance nor change in cognitive performance on any measure predicted cessation outcomes after correcting for multiple comparisons	10
Loughead et al., 2015	Working memory	Task, Brain imaging	72	Treatment-seeking smokers aged 18-65 years; mean age 41.9 years; U.S.	L.	Decreased activation of the dorsolateral prefrontal cortex and reduced suppression of the posterior cingulate cortex during smoking abstinence associated with earlier smoking relapse.	10
Luijten et al., 2016	Inhibitory control	Task, Brain imaging	48	Current smokers and non-smoking matched controls; mean age ranged from 39.51 to 46.56 years across groups; Netherlands	L.	Greater inhibitory control predicted higher likelihood of smoking relapse.	10
Magar et al., 2008	EF general	Q'aire	134	Undergraduate students; mean age 20.87 years; Scotland	C.S.	Poorer EF was associated with greater engagement in problem behaviors while under the influence of alcohol. EF was not associated with age of first cigarette use.	6
Meil et al., 2016	Cognitive flexibility, inhibitory control, EF general, working memory	Task, Q'aire	321	Undergraduate students; 72.3% between 18 and 19 years of age; U.S.	C.S.	Lower Frontal Systems Behavioral Scale disinhibition and EF scores predicted greater tobacco use and frequency; Lower scores on the Delis-Kaplan EF System Cognitive flexibility composite, Monitoring composite, and Inhibition composite score N.S. with tobacco use.	9

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c
Moss et al., 2009	Working memory, cognitive flexibility, attention, EF general	Task	31	Treatment-seeking smokers with schizophrenia; mean age 40 years; U.S.	L.	Better scores on Digit Span backwards (WM) and Trail Making part B (cognitive shifting) associated with quitting smoking; Continuous Performance Test (attention), Visuospatial Working Memory, WCST, Trail Making test, Digit Span forwards, Iowa Gambling, and California Verbal Learning Test were N.S. with smoking cessation.	11
Mueller et al., 2009	Cognitive flexibility, inhibitory control	Task	19	Participants smoked at least 20 cigarettes per day, were dependent on tobacco, and had no plans to quit smoking in the next 30 days; all participants over the age of 18 years; U.S.	L.	Stronger inhibitory control associated with late relapses. Worse performance on the Failure to Maintain Set portion of WCST (cognitive shifting) associated with shorter relapse time.	5
Schlam et al., 2011	EF general	Task	365	Smokers motivated to quit, smoking 10+ cigarettes per day; mean age 43.81 years; U.S.	L.	Poor cessation outcomes associated with greater EF impairment; EF response times N.S. in predicting cessation.	12
Sheffer et al., 2012	Inhibitory control, neurocognitiv e deficits, EF general, decision- making	Task, Q'aire	97	Highly dependent smokers with high motivation to quit; median household income of \$17,750; mean age 48.16 years; U.S.	L.	Delay-discounting, impulsivity, and perceived control predicted smoking cessation. Inhibitory control, neurocognitive deficits, EF general, decision-making N.S. with tobacco use.	10

Author	Executive Functioning (EF) Measures	EF Tools ^a	Sample Size	Sample Description	Study Design ^b	Results	MQS c				
Wilson et al., 2015	Cognitive flexibility, inhibitory control, attention, planning	Task	94	Smokers with no plans to quit; smoking at least 20 cigarettes per day; mean age 40.4 years; U.S.	C.S.	Increased inhibitory control and cognitive flexibility correlated with discounting for some amounts of money. Planning, impulsivity, and attention N.S. with tobacco use.	7				
Exercise/Physic	Exercise/Physical Activity										
Hall et al., 2008	Inhibitory control	Task	64	Undergraduate students; mean age 19.0 years; Canada	L.	Higher inhibitory control levels predicted increased physical activity.	8				
Loprinzi & Nooe, 2016	Inhibitory control	Task	18	61% undergraduate students; 38.9% graduate students; mean age 23.7 years; U.S.	L.	Better inhibitory control predicted reduced time of sedentary behavior; Inhibitory control N.S. with sedentary behavior in follow-up.	8				
Roebroeck et al., 2006	EF general	Task	28	Participants with meningomyelocele matched with healthy controls; mean age: 18 years; Netherlands	C.S.	Meningomyelocele group showed those with poorer performance on Tower of London and Trail Making B tasks were less physically active than healthy counterparts.	7				

References

- Albert, S. M., Weber, C. M., Todak, G., Polanco, C., Clouse, R., McElhiney, M., . . . Marder, K. (1999). An observed performance test of medication management ability in HIV: Relation to neuropsychological status and medication adherence outcomes. *AIDS and Behavior*, 3(2), 121–128. http://dx.doi.org/1025483806464
- Allan, J. L., Johnston, M., & Campbell, N. (2010). Unintentional eating. What determines goal-incongruent chocolate consumption? *Appetite*, *54*(2), 422–425. http://dx.doi.org/10.1016/j.appet.2010.01.009
- Allan, J. L., Johnston, M., & Campbell, N. (2011). Missed by an inch or a mile? Predicting the size of intention–behaviour gap from measures of executive control. *Psychology & Health*, 26(6), 635–650. http://dx.doi.org/10.1080/08870441003681307
- Allan, J. L., Johnston, M., & Campbell, N. (2015). Snack purchasing is healthier when the cognitive demands of choice are reduced: A randomized controlled trial. *Health Psychology*, 34(7), 750–755. http://dx.doi.org/10.1037/hea0000173
- Allom, V., & Mullan, B. (2014). Individual differences in executive function predict distinct eating behaviours. *Appetite*, 80, 123–130. http://dx.doi.org/10.1016/j.appet.2014.05.007
- Badenes, D., Garolera, M., Casas, L., Cejudo-Bolivar, J., de Francisco, J., Zaragoza, S., . . . Aguilar, M. (2014).
 Driving competences and neuropsychological factors associated to driving counseling in multiple sclerosis.
 Journal of the International Neuropsychological Society, 20(5), 555–565.

http://dx.doi.org/10.1017/S1355617714000368

- Balodis, I. M., Molina, N. D., Kober, H., Worhunsky, P. D., White, M. A., Rajita, S., . . . Potenza, M. N. (2013).
 Divergent neural substrates of inhibitory control in binge eating disorder relative to other manifestations of obesity. *Obesity*, 21(2), 367–377. http://dx.doi.org/10.1002/oby.20068
- Barkley, R. A., Murphy, K. R., Dupaul, G. I., & Bush, T. (2002). Driving in young adults with attention deficit hyperactivity disorder: Knowledge, performance, adverse outcomes, and the role of executive functioning. *Journal of the International Neuropsychological Society*, 8(5), 655–672.

http://dx.doi.org/10.1017/S1355617702801345

Bioulac, S., Sagaspe, P., Micoulaud-Franchi, J., Altena, E., Taillard, J., Schröder, C., . . . Philip, P. (2016).
Objective level of alertness and inhibitory control predict highway driving impairment in adults with ADHD. *Journal of Attention Disorders*. Advance online publication.
http://dx.doi.org/10.1177/1087054716633751

- Blackburne, T., Rodriguez, A., & Johnstone, S. J. (2016). A serious game to increase healthy food consumption in overweight or obese adults: Randomized controlled trial. *JMIR Serious Games*, 4(2), e10. http://dx.doi.org/10.2196/games.5708
- Boon, B., Stroebe, W., & Schut, H. (1997). Does cognitive distraction lead to overeating in restrained eaters? *Behavioural and Cognitive Psychotherapy*, 25(4), 319–327. http://dx.doi.org/10.1017/S1352465800018725
- Boyer, L., Cermolacce, M., Dassa, D., Fernandez, J., Boucekine, M., Richieri, R., . . . Lancon, C. (2012). Neurocognition, insight and medication nonadherence in schizophrenia: A structural equation modeling approach. *PLoS One*, 7(10), e47655. http://dx.doi.org/10.1371/journal.pone.0047655
- Brown, T. G., Ouimet, M. C., Eldeb, M., Tremblay, J., Vingilis, E., Nadeau, L., . . . Bechara, A. (2016). Personality, executive control, and neurobiological characteristics associated with different forms of risky driving. *PLoS One*, *11*(2), e0150227. http://dx.doi.org/10.1371/journal.pone.0150227
- Bunce, D., Young, M. S., Blane, A., & Khugputh, P. (2012). Age and inconsistency in driving performance. *Accident Analysis and Prevention*, 49, 293–299. http://dx.doi.org/10.1016/j.aap.2012.01.001
- Calvo, D., Galioto, R., Gunstad, J., & Spitznagel, M. B. (2014). Uncontrolled eating is associated with reduced executive functioning. *Clinical Obesity*, *4*(3), 172–179. http://dx.doi.org/10.1111/cob.12058
- Casaletto, K. B., Kwan, S., Montoya, J. L., Obermeit, L. C., Gouaux, B., Poquette, A., . . . Moore, D. J. (2016).
 Predictors of psychotropic medication adherence among HIV+ individuals living with bipolar disorder. *International Journal of Psychiatry in Medicine*, *51*(1), 69–83.

http://dx.doi.org/10.1177/0091217415621267

- Chein, J., Albert, D., O'Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain's reward circuitry. *Developmental Science*, 14(2), F1–F10. http://dx.doi.org/10.1111/j.1467-7687.2010.01035.x
- Chen, K., Anderson, S. W., Rusch, M. L., Aksan, N. S., Dawson, J. D., & Rizzo, M. (2013). "Choking under pressure" in older drivers. *Proceedings of the 7th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, 2013*, 432–438. Retrieved from http://drivingassessment.uiowa.edu/sites/default/files/DA2013/Papers/066_Rizzo_0.pdf
- Cohen, J. I., Yates, K. F., Duong, M., & Convit, A. (2011). Obesity, orbitofrontal structure and function are associated with food choice: A cross-sectional study. *BMJ Open*, 1(2), e000175. http://dx.doi.org/10.1136/bmjopen-2011-000175
- Contardo, C., Black, A. C., Beauvais, J., Dieckhaus, K., & Rosen, M. I. (2009). Relationship of prospective memory to neuropsychological function and antiretroviral adherence. *Archives of Clinical Neuropsychology*, 24(6), 547–554. http://dx.doi.org/10.1093/arclin/acp046
- de Ruiter, M. B., Oosterlaan, J., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2012). Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. *Drug and Alcohol Dependence*, *121*(1-2), 81–89. http://dx.doi.org/10.1016/j.drugalcdep.2011.08.010
- Dedovic, K., Pruessner, J., Tremblay, J., Nadeau, L., Ouimet, M. C., Lepage, M., & Brown, T. G. (2016). Examining cortical thickness in male and female DWI offenders. *Neuroscience Letters*, 619, 189–195. http://dx.doi.org/10.1016/j.neulet.2016.03.034
- Dehning, M., Kim, J., Nguyen, C. M., Shivapour, E., & Denburg, N. L. (2014). Neuropsychological performance, brain imaging, and driving violations in multiple sclerosis. *Archives of Physical Medicine* and Rehabilitation, 95(10), 1818–1823. http://dx.doi.org/10.1016/j.apmr.2014.05.022

^a Q'aire = Self-reported questionnaire. ^bC.S. = Cross-sectional; L. = Longitudinal. ^cMQS = Methodological Quality Score. Possible scores were from 3 to 15 points.

- Dempsey, A., Dyehouse, J., & Schafer, J. (2011). The relationship between executive function, AD/HD, overeating, and obesity. Western Journal of Nursing Research, 33(5), 609–629. http://dx.doi.org/10.1177/0193945910382533
- Dingemans, A. E., Visser, H., Paul, L., & van Furth, E. F. (2015). Set-shifting abilities, mood and loss of control over eating in binge eating disorder: An experimental study. *Psychiatry Research*, 230(2), 242–248. http://dx.doi.org/10.1016/j.psychres.2015.09.001
- Dinn, W. M., Aycicegi, A., & Harris, C. L. (2004). Cigarette smoking in a student sample: Neurocognitive and clinical correlates. *Addictive Behaviors*, 29(1), 107–126. http://dx.doi.org/10.1016/j.addbeh.2003.07.001
- Duchesne, M., Mattos, P., Appolinário, J. C., de Freitas, S. R., Coutinho, G., Santos, C., & Coutinho, W. (2010). Assessment of executive functions in obese individuals with binge eating disorder. *Revista Brasileira de Psiquiatria*, 32(4), 381–388. http://dx.doi.org/10.1590/S1516-44462010000400011
- El-Missiry, A., Elbatrawy, A., El Missiry, M., Moneim, D. A., Ali, R., & Essawy, H. (2015). Comparing cognitive functions in medication adherent and non-adherent patients with schizophrenia. *Journal of Psychiatric Research*, 70, 106–112. http://dx.doi.org/10.1016/j.jpsychires.2015.09.006
- Ettenhofer, M. L., Foley, J., Castellon, S. A., & Hinkin, C. H. (2010). Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS. *Neurology*, 74(15), 1217–1222. http://dx.doi.org/10.1212/WNL.0b013e3181d8c1ca
- Ettenhofer, M. L., Hinkin, C. H., Castellon, S. A., Durvasula, R., Ullman, J., Lam, M., . . . Foley, J. (2009). Aging, neurocognition, and medication adherence in HIV infection. *The American Journal of Geriatric Psychiatry*, 17(4), 281–290. http://dx.doi.org/10.1097/JGP.0b013e31819431bd
- Flaudias, V., Picot, M. C., Lopez-Castroman, J., Llorca, P., Schmitt, A., Perriot, J., . . . Guillaume, S. (2016). Executive functions in tobacco dependence: Importance of inhibitory capacities. *PLoS One*, *11*(3), e0150940. http://dx.doi.org/10.1371/journal.pone.0150940

- Frankort, A., Roefs, A., Siep, N., Roebroeck, A., Havermans, R., & Jansen, A. (2015). Neural predictors of chocolate intake following chocolate exposure. *Appetite*, 87, 98–107. http://dx.doi.org/10.1016/j.appet.2014.12.204
- Galioto, R., Spitznagel, M. B., Strain, G., Devlin, M., Cohen, R., Paul, R., . . . Gunstad, J. (2012). Cognitive function in morbidly obese individuals with and without binge eating disorder. *Comprehensive Psychiatry*, 53(5), 490–495. http://dx.doi.org/10.1016/j.comppsych.2011.09.002
- Gelb, S. R., Shapiro, R. J., & Thornton, W. J. L. (2010). Predicting medication adherence and employment status following kidney transplant: The relative utility of traditional and everyday cognitive approaches. *Neuropsychology*, 24(4), 514–526. http://dx.doi.org/10.1037/a0018670
- Graham, A. L., Gluck, M. E., Votruba, S. B., Krakoff, J., & Thearle, M. S. (2014). Perseveration augments the effects of cognitive restraint on *ad libitum* food intake in adults seeking weight loss. *Appetite*, 82, 78–84. http://dx.doi.org/10.1016/j.appet.2014.07.008
- Guinosso, S. A., Johnson, S. B., Schultheis, M. T., Graefe, A. C., & Bishai, D. M. (2016). Neurocognitive correlates of young drivers' performance in a driving simulator. *The Journal of Adolescent Health*, 58(4), 467–473. http://dx.doi.org/10.1016/j.jadohealth.2015.12.018
- Haikonen, S., Wikman, A. S., Kalska, H., Summala, H., Hietanen, M., Nieminen, T., & Vilkki, J. (1998).
 Neuropsychological correlates of duration of glances at secondary tasks while driving. *Applied Neuropsychology*, 5(1), 24–32. http://dx.doi.org/10.1207/s15324826an0501_3
- Hall, P. A. (2012). Executive control resources and frequency of fatty food consumption: Findings from an agestratified community sample. *Health Psychology*, *31*(2), 235–241. http://dx.doi.org/10.1037/a0025407
- Hall, P. A., Fong, G. T., Epp, L. J., & Elias, L. J. (2008). Executive function moderates the intention-behavior link for physical activity and dietary behavior. *Psychology & Health*, 23(3), 309–326. http://dx.doi.org/10.1080/14768320701212099

- Hall, P. A., Lowe, C., & Vincent, C. (2014). Executive control resources and snack food consumption in the presence of restraining versus facilitating cues. *Journal of Behavioral Medicine*, *37*(4), 587–594. http://dx.doi.org/10.1007/s10865-013-9528-3
- Hall, P., Tran, B., Lowe, C., Vincent, C., Mourtzakis, M., Liu-Ambrose, T., . . . Gidron, Y. (2015). Expression of executive control in situational context: Effects of facilitating versus restraining cues on snack food consumption. *Health Psychology*, 34(5), 539–546. http://dx.doi.org/10.1037/hea0000134
- Hargrave, D. D., Nupp, J. M., & Erickson, R. J. (2012). Two brief measures of executive function in the prediction of driving ability after acquired brain injury. *Neuropsychological Rehabilitation*, 22(4), 489– 500. http://dx.doi.org/10.1080/09602011.2012.662333
- Haynes, A., Kemps, E., & Moffitt, R. (2015). The moderating role of state inhibitory control in the effect of evaluative conditioning on temptation and unhealthy snacking. *Physiology & Behavior*, *152*(Part A), 135–142. http://dx.doi.org/10.1016/j.physbeh.2015.09.020
- Hennig, B. L., Kaplan, R. F., Nowicki, A. E., Barclay, J. E., & Gertsberg, A. G. (2014). We can predict when driving is no longer safe for people who have HD using standard neuropsychological measures. *Journal of Huntington's Disease*, 3(4), 351–353. http://dx.doi.org/10.3233/JHD-140125
- Hinkin, C. H., Castellon, S. A., Durvasula, R. S., Hardy, D. J., Lam, M. N., Mason, K. I., . . . Stefaniak, M. (2002). Medication adherence among HIV+ adults: Effects of cognitive dysfunction and regimen complexity. *Neurology*, *59*(12), 1944–1950. http://dx.doi.org/10.1212/01.WNL.0000038347.48137.67
- Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Durvasula, R. S., Lam, M. N., & Stefaniak, M.
 (2004). Medication adherence in HIV-infected adults: Effect of patient age, cognitive status, and substance abuse. *AIDS*, *18*(Suppl. 1), S19–S25. http://dx.doi.org/10.1097/00002030-200401001-00004
- Hofmann, W., Adriaanse, M., Vohs, K. D., & Baumeister, R. F. (2014). Dieting and the self-control of eating in everyday environments: An experience sampling study. *British Journal of Health Psychology*, 19(3), 523– 539. http://dx.doi.org/10.1111/bjhp.12053

^a Q'aire = Self-reported questionnaire.^bC.S. = Cross-sectional; L. = Longitudinal.^c MQS = Methodological Quality Score. Possible scores were from 3 to 15 points.

- Hogenkamp, P. S., Sundbom, M., Nilsson, V. C., Benedict, C., & Schiöth, H. B. (2015). Patients lacking sustainable long-term weight loss after gastric bypass surgery show signs of decreased inhibitory control of prepotent responses. *PLoS One*, *10*(3), e0119896. http://dx.doi.org/10.1371/journal.pone.0119896
- Holmes, A. J., Hollinshead, M. O., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2016). Individual differences in cognitive control circuit anatomy link sensation seeking, impulsivity, and substance use. *The Journal of Neuroscience*, *36*(14), 4038–4049. http://dx.doi.org/10.1523/JNEUROSCI.3206-15.2016
- Houben, K., Dassen, F. C. M., & Jansen, A. (2016). Taking control: Working memory training in overweight individuals increases self-regulation of food intake. *Appetite*, 105, 567–574. http://dx.doi.org/10.1016/j.appet.2016.06.029
- Israel, M., Klein, M., Pruessner, J., Thaler, L., Spilka, M., Efanov, S., . . . Steiger, H. (2015). N-back task performance and corresponding brain-activation patterns in women with restrictive and bulimic eatingdisorder variants: Preliminary findings. *Psychiatry Research*, 232(1), 84–91. http://dx.doi.org/10.1016/j.pscychresns.2015.01.022
- Jackson, M. L., Croft, R. J., Kennedy, G. A., Owens, K., & Howard, M. E. (2013). Cognitive components of simulated driving performance: Sleep loss effects and predictors. *Accident Analysis and Prevention*, 50, 438–444. http://dx.doi.org/10.1016/j.aap.2012.05.020
- Jäncke, L., Brunner, B., & Esslen, M. (2008). Brain activation during fast driving in a driving simulator: The role of the lateral prefrontal cortex. *Neuroreport*, 19(11), 1127–1130. http://dx.doi.org/10.1097/WNR.0b013e3283056521
- Jarboe, K. S., & Schwartz, S. K. (1999). The relationship between medication noncompliance and cognitive function in patients with schizophrenia. *Journal of the American Psychiatric Nurses Association*, 5(2), 2–8. http://dx.doi.org/10.1016/S1078-3903(99)90025-3
- Jónsdóttir, H., Opjordsmoen, S., Birkenaes, A. B., Simonsen, C., Engh, J. A., Ringen, P. A., . . . Andreassen, O. A. (2013). Predictors of medication adherence in patients with schizophrenia and bipolar disorder. *Acta*

Psychiatrica Scandinavica, *127*(1), 23–33. http://dx.doi.org/10.1111/j.1600-0447.2012.01911.x ^a Q'aire = Self-reported questionnaire. ^bC.S. = Cross-sectional; L. = Longitudinal. ^c MQS = Methodological Quality Score. Possible scores were from 3 to 15 points.

- Kahalley, L. S., Robinson, L. A., Tyc, V. L., Hudson, M. M., Leisenring, W., Stratton, K., . . . Hinds, P. S. (2010). Attentional and executive dysfunction as predictors of smoking within the childhood cancer survivor study cohort. *Nicotine & Tobacco Research*, *12*(4), 344–354. http://dx.doi.org/10.1093/ntr/ntq004
- Kelly, N. R., Bulik, C. M., & Mazzeo, S. E. (2013). Executive functioning and behavioral impulsivity of young women who binge eat. *The International Journal of Eating Disorders*, 46(2), 127–139. http://dx.doi.org/10.1002/eat.22096
- Kim, S., Shin, I., Kim, J., Yang, S., Shin, H., & Yoon, J. (2006). Association between attitude toward medication and neurocognitive function in schizophrenia. *Clinical Neuropharmacology*, 29(4), 197–205. http://dx.doi.org/10.1097/01.WNF.0000228173.08885.65
- Knolle-Veentjer, S., Huth, V., Ferstl, R., Aldenhoff, J. B., & Hinze-Selch, D. (2008). Delay of gratification and executive performance in individuals with schizophrenia: Putative role for eating behavior and body weight regulation. *Journal of Psychiatric Research*, 42(2), 98–105.

http://dx.doi.org/10.1016/j.jpsychires.2006.10.003

- Kräplin, A., Behrendt, S., Scherbaum, S., Dshemuchadse, M., Bühringer, G., & Goschke, T. (2015). Increased impulsivity in pathological gambling: Considering nicotine dependence. *Journal of Clinical and Experimental Neuropsychology*, 37(4), 367–378. http://dx.doi.org/10.1080/13803395.2015.1018145
- Krönke, K., Wolff, M., Benz, A., & Goschke, T. (2015). Successful smoking cessation is associated with prefrontal cortical function during a Stroop task: A preliminary study. *Psychiatry Research: Neuroimaging*, 234(1), 52–56. http://dx.doi.org/10.1016/j.pscychresns.2015.08.005
- León-Domínguez, U., Solís-Marcos, I., Barrio-Álvarez, E., Barroso, Y. M., & León-Carrión, J. (2017). Safe driving and executive functions in healthy middle-aged drivers. *Applied Neuropsychology: Adult, 24*(5), 395–403. http://dx.doi.org/10.1080/23279095.2015.1137296
- Limbers, C. A., & Young, D. (2015). Executive functions and consumption of fruits/ vegetables and high saturated fat foods in young adults. *Journal of Health Psychology*, 20(5), 602–611.

http://dx.doi.org/10.1177/1359105315573470

- Lincoln, N. B., & Radford, K. A. (2008). Cognitive abilities as predictors of safety to drive in people with multiple sclerosis. *Multiple Sclerosis*, *14*(1), 123–128. http://dx.doi.org/10.1177/1352458507080467
- López-Ramón, M. F., Castro, C., Roca, J., Ledesma, R., & Lupiañez, J. (2011). Attentional networks functioning, age, and attentional lapses while driving. *Traffic Injury Prevention*, 12(5), 518–528. http://dx.doi.org/10.1080/15389588.2011.588295
- Loprinzi, P. D., & Nooe, A. (2016). Executive function influences sedentary behavior: A longitudinal study. *Health Promotion Perspectives*, 6(4), 180–184. http://dx.doi.org/10.15171/hpp.2016.29
- Loughead, J., Falcone, M., Wileyto, E. P., Albelda, B., Audrain-McGovern, J., Cao, W., . . . Lerman, C. (2016). Can brain games help smokers quit? Results of a randomized clinical trial. *Drug and Alcohol Dependence*, *168*, 112–118. http://dx.doi.org/10.1016/j.drugalcdep.2016.08.621
- Loughead, J., Wileyto, E. P., Ruparel, K., Falcone, M., Hopson, R., Gur, R., & Lerman, C. (2015). Working memory-related neural activity predicts future smoking relapse. *Neuropsychopharmacology*, 40(6), 1311– 1320. http://dx.doi.org/10.1038/npp.2014.318
- Lowe, C. J., Hall, P. A., & Staines, W. R. (2014). The effects of continuous theta burst stimulation to the left dorsolateral prefrontal cortex on executive function, food cravings, and snack food consumption. *Psychosomatic Medicine*, 76(7), 503–511. http://dx.doi.org/10.1097/PSY.00000000000000000
- Luijten, M., Kleinjan, M., & Franken, I. H. A. (2016). Event-related potentials reflecting smoking cue reactivity and cognitive control as predictors of smoking relapse and resumption. *Psychopharmacology*, 233(15-16), 2857–2868. http://dx.doi.org/10.1007/s00213-016-4332-8
- Lundqvist, A., Alinder, J., Alm, H., Gerdle, B., Levander, S., & Rönnberg, J. (1997). Neuropsychological aspects of driving after brain lesion: Simulator study and on-road driving. *Applied Neuropsychology*, *4*(4), 220–230. http://dx.doi.org/10.1207/s15324826an0404_3
- Lyu, Z., & Jackson, T. (2016). Acute stressors reduce neural inhibition to food cues and increase eating among binge eating disorder symptomatic women. *Frontiers in Behavioral Neuroscience*, *10*, 188.

http://dx.doi.org/10.3389/fnbeh.2016.00188

- Magar, E. C. E., Phillips, L. H., & Hosie, J. A. (2008). Self-regulation and risk-taking. *Personality and Individual Differences*, 45(2), 153–159. http://dx.doi.org/10.1016/j.paid.2008.03.014
- Manasse, S. M., Espel, H. M., Forman, E. M., Ruocco, A. C., Juarascio, A. S., Butryn, M. L., . . . Lowe, M. R. (2015). The independent and interacting effects of hedonic hunger and executive function on binge eating. *Appetite*, 89, 16–21. http://dx.doi.org/10.1016/j.appet.2015.01.013
- Manasse, S. M., Espel, H. M., Schumacher, L. M., Kerrigan, S. G., Zhang, F., Forman, E. M., & Juarascio, A. S. (2016). Does impulsivity predict outcome in treatment for binge eating disorder? A multimodal investigation. *Appetite*, 105, 172–179. http://dx.doi.org/10.1016/j.appet.2016.05.026
- Manasse, S. M., Forman, E. M., Ruocco, A. C., Butryn, M. L., Juarascio, A. S., & Fitzpatrick, K. K. (2015). Do executive functioning deficits underpin binge eating disorder? A comparison of overweight women with and without binge eating pathology. *The International Journal of Eating Disorders*, 48(6), 677–683. http://dx.doi.org/10.1002/eat.22383
- Manasse, S. M., Juarascio, A. S., Forman, E. M., Berner, L. A., Butryn, M. L., & Ruocco, A. C. (2014). Executive functioning in overweight individuals with and without loss-of-control eating. *European Eating Disorders Review*, 22(5), 373–377. http://dx.doi.org/10.1002/erv.2304
- Mann, L. S., Westlake, T., Wise, T. N., Beckman, A., Beckman, P., Brodeur, S., & Poretz, D. (1999). Executive functioning and compliance in HIV patients. *Psychological Reports*, 84(1), 319–322. http://dx.doi.org/10.2466/PR0.84.1.319-322
- Marcotte, T. D., Wolfson, T., Rosenthal, T. J., Heaton, R. K., Gonzalez, R., Ellis, R. J., & Grant, I. (2004). A multimodal assessment of driving performance in HIV infection. *Neurology*, 63(8), 1417–1422. http://dx.doi.org/10.1212/01.WNL.0000141920.33580.5D
- Martinez-Aran, A., Scott, J., Colom, F., Torrent, C., Tabares-Seisdedos, R., Daban, C., . . . Vieta, E. (2009). Treatment nonadherence and neurocognitive impairment in bipolar disorder. *The Journal of Clinical Psychiatry*, 70(7), 1017–1023. http://dx.doi.org/10.4088/JCP.08m04408

^a Q'aire = Self-reported questionnaire. ^bC.S. = Cross-sectional; L. = Longitudinal. ^cMQS = Methodological Quality Score. Possible scores were from 3 to 15 points.

- Meil, W. M., LaPorte, D. J., Mills, J. A., Sesti, A., Collins, S. M., & Stiver, A. G. (2016). Sensation seeking and executive deficits in relation to alcohol, tobacco, and marijuana use frequency among university students:
 Value of ecologically based measures. *Addictive Behaviors*, 62, 135–144.
 http://dx.doi.org/10.1016/j.addbeh.2016.06.014
- Moss, T. G., Sacco, K. A., Allen, T. M., Weinberger, A. H., Vessicchio, J. C., & George, T. P. (2009).
 Prefrontal cognitive dysfunction is associated with tobacco dependence treatment failure in smokers with schizophrenia. *Drug and Alcohol Dependence*, *104*(1-2), 94–99.
 http://dx.doi.org/10.1016/j.drugalcdep.2009.04.005
- Mueller, E. T., Landes, R. D., Kowal, B. P., Yi, R., Stitzer, M. L., Burnett, C. A., & Bickel, W. K. (2009).
 Delay of smoking gratification as a laboratory model of relapse: Effects of incentives for not smoking, and relationship with measures of executive function. *Behavioural Pharmacology*, 20(5-6), 461–473.
 http://dx.doi.org/10.1097/FBP.0b013e3283305ec7
- Mullan, B., Allom, V., Brogan, A., Kothe, E., & Todd, J. (2014). Self-regulation and the intention behaviour gap. Exploring dietary behaviours in university students. *Appetite*, 73, 7–14. http://dx.doi.org/10.1016/j.appet.2013.10.010
- Perpiñá, C., Segura, M., & Sánchez-Reales, S. (2017). Cognitive flexibility and decision-making in eating disorders and obesity. *Eating and Weight Disorders*, 22(3), 435–444. http://dx.doi.org/10.1007/s40519-016-0331-3
- Pope, C. N., Bell, T. R., & Stavrinos, D. (2016). Mechanisms behind distracted driving behavior: The role of age and executive function in the engagement of distracted driving. *Accident Analysis and Prevention*, 98, 123–129. http://dx.doi.org/10.1016/j.aap.2016.09.030
- Rike, P., Ulleberg, P., Schultheis, M. T., Lundqvist, A., & Schanke, A. (2014). Behavioural ratings of selfregulatory mechanisms and driving behaviour after an acquired brain injury. *Brain Injury*, 28(13-14), 1687–1699. http://dx.doi.org/10.3109/02699052.2014.947632

^a Q'aire = Self-reported questionnaire. ^bC.S. = Cross-sectional; L. = Longitudinal. ^cMQS = Methodological Quality Score. Possible scores were from 3 to 15 points.

- Robinson, D. G., Woerner, M. G., Alvir, J. M. J., Bilder, R. M., Hinrichsen, G. A., & Lieberman, J. A. (2002). Predictors of medication discontinuation by patients with first-episode schizophrenia and schizoaffective disorder. *Schizophrenia Research*, 57(2-3), 209–219. http://dx.doi.org/10.1016/S0920-9964(01)00312-7
- Roca, J., Crundall, D., Moreno-Ríos, S., Castro, C., & Lupiáñez, J. (2013). The influence of differences in the functioning of the neurocognitive attentional networks on drivers' performance. Accident Analysis and Prevention, 50, 1193–1206. http://dx.doi.org/10.1016/j.aap.2012.09.032
- Roebroeck, M. E., Hempenius, L., Van Baalen, B., Hendriksen, J. G. M., van den Berg-Emons, H J G, & Stam, H. J. (2006). Cognitive functioning of adolescents and young adults with meningomyelocele and level of everyday physical activity. *Disability and Rehabilitation*, 28(20), 1237–1242. http://dx.doi.org/10.1080/09638280600551716
- Rollins, B. Y., Dearing, K. K., & Epstein, L. H. (2010). Delay discounting moderates the effect of food reinforcement on energy intake among non-obese women. *Appetite*, 55(3), 420–425. http://dx.doi.org/10.1016/j.appet.2010.07.014
- Ross, V., Jongen, E. M. M., Brijs, K., Brijs, T., & Wets, G. (2016). Investigating risky, distracting, and protective peer passenger effects in a dual process framework. *Accident Analysis and Prevention*, 93, 217– 225. http://dx.doi.org/10.1016/j.aap.2016.05.007
- Ross, V., Jongen, E., Brijs, T., Ruiter, R., Brijs, K., & Wets, G. (2015). The relation between cognitive control and risky driving in young novice drivers. *Applied Neuropsychology: Adult, 22*(1), 61–72. http://dx.doi.org/10.1080/23279095.2013.838958
- Schlam, T. R., Japuntich, S. J., Piper, M. E., Gloria, R., Baker, T. B., & Curtin, J. J. (2011). Cognitive conflict following appetitive versus negative cues and smoking cessation failure. *Psychopharmacology*, 214(3), 603–616. http://dx.doi.org/10.1007/s00213-010-2063-9
- Shanmugaratnam, S., Kass, S. J., & Arruda, J. E. (2010). Age differences in cognitive and psychomotor abilities and simulated driving. *Accident Analysis and Prevention*, *42*(3), 802–808.

http://dx.doi.org/10.1016/j.aap.2009.10.002

- Sheffer, C., Mackillop, J., McGeary, J., Landes, R., Carter, L., Yi, R., . . . Bickel, W. (2012). Delay discounting, locus of control, and cognitive impulsiveness independently predict tobacco dependence treatment outcomes in a highly dependent, lower socioeconomic group of smokers. *The American Journal on Addictions, 21*(3), 221–232. http://dx.doi.org/10.1111/j.1521-0391.2012.00224.x
- Sims, R. C., Bennett, N., Mwendwa, D. T., Ali, M. K., Levy, S. T., Callender, C. O., & Campbell, A. L. (2014). Executive function and negative eating behaviors in severely obese African Americans. *Ethnicity & Disease*, 24(3), 328–334. Retrieved from

https://www.ethndis.org/edonline/index.php/ethndis/article/view/194

- Solomon, T. M., & Halkitis, P. N. (2008). Cognitive executive functioning in relation to HIV medication adherence among gay, bisexual, and other men who have sex with men. *AIDS and Behavior*, *12*(1), 68–77. http://dx.doi.org/10.1007/s10461-007-9273-0
- Spinella, M., & Lyke, J. (2004). Executive personality traits and eating behavior. *The International Journal of Neuroscience*, 114(1), 83–93. http://dx.doi.org/10.1080/00207450490249356
- Starkey, N. J., & Isler, R. B. (2016). The role of executive function, personality and attitudes to risks in explaining self-reported driving behaviour in adolescent and adult male drivers. *Transportation Research Part F: Traffic Psychology and Behaviour, 38*, 127–136. http://dx.doi.org/10.1016/j.trf.2016.01.013
- Steadman, K. M., & Knouse, L. E. (2016). Is the relationship between ADHD symptoms and binge eating mediated by impulsivity? *Journal of Attention Disorders*, 20(11), 907–912. http://dx.doi.org/10.1177/1087054714530779
- Streeter, C. C., Terhune, D. B., Whitfield, T. H., Gruber, S., Sarid-Segal, O., Silveri, M. M., . . . Yurgelun-Todd, D. (2008). Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. *Neuropsychopharmacology*, *33*(4), 827–836. http://dx.doi.org/10.1038/sj.npp.1301465
- Tabibi, Z., Borzabadi, H. H., Stavrinos, D., & Mashhadi, A. (2015). Predicting aberrant driving behaviour: The role of executive function. *Transportation Research Part F: Traffic Psychology and Behaviour, 34*, 18–28.

http://dx.doi.org/10.1016/j.trf.2015.07.015

- Thames, A. D., Arentoft, A., Rivera-Mindt, M., & Hinkin, C. H. (2013). Functional disability in medication management and driving among individuals with HIV: A 1-year follow-up study. *Journal of Clinical and Experimental Neuropsychology*, 35(1), 49–58. http://dx.doi.org/10.1080/13803395.2012.747596
- Thames, A. D., Kim, M. S., Becker, B. W., Foley, J. M., Hines, L. J., Singer, E. J., . . . Hinkin, C. H. (2011). Medication and finance management among HIV-infected adults: The impact of age and cognition. *Journal of Clinical and Experimental Neuropsychology*, *33*(2), 200–209. http://dx.doi.org/10.1080/13803395.2010.499357
- Tuulari, J. J., Karlsson, H. K., Hirvonen, J., Salminen, P., Nuutila, P., & Nummenmaa, L. (2015). Neural circuits for cognitive appetite control in healthy and obese individuals: An fMRI study. *PLoS One*, 10(2), e0116640. http://dx.doi.org/10.1371/journal.pone.0116640
- Verdejo-García, A., Betanzos-Espinosa, P., Lozano, O. M., Vergara-Moragues, E., González-Saiz, F., Fernández-Calderón, F., . . . Pérez-García, M. (2012). Self-regulation and treatment retention in cocaine dependent individuals: A longitudinal study. *Drug and Alcohol Dependence*, *122*(1-2), 142–148. http://dx.doi.org/10.1016/j.drugalcdep.2011.09.025
- Verdoux, H., Liraud, F., Assens, F., Abalan, F., & van Os, J. (2002). Social and clinical consequences of cognitive deficits in early psychosis: A two-year follow-up study of first-admitted patients. *Schizophrenia Research*, 56(1-2), 149–159. http://dx.doi.org/10.1016/S0920-9964(01)00225-0
- Waldrop-Valverde, D., Ownby, R. L., Wilkie, F. L., Mack, A., Kumar, M., & Metsch, L. (2006).
 Neurocognitive aspects of medication adherence in HIV-positive injecting drug users. *AIDS and Behavior*, *10*(3), 287–297. http://dx.doi.org/10.1007/s10461-005-9062-6
- Wang, Y., Dong, D., Todd, J., Du, J., Yang, Z., Lu, H., & Chen, H. (2016). Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study. *Neuroscience Letters*, 631, 56–62. http://dx.doi.org/10.1016/j.neulet.2016.08.017

Wilson, A. G., Franck, C. T., Mueller, E. T., Landes, R. D., Kowal, B. P., Yi, R., & Bickel, W. K. (2015).

Predictors of delay discounting among smokers: Education level and a utility measure of cigarette ^a Q'aire = Self-reported questionnaire. ^bC.S. = Cross-sectional; L. = Longitudinal. ^c MQS = Methodological Quality Score. Possible scores were from 3 to 15 points. reinforcement efficacy are better predictors than demographics, smoking characteristics, executive functioning, impulsivity, or time perception. *Addictive Behaviors*, *45*, 124–133. http://dx.doi.org/10.1016/j.addbeh.2015.01.027

- Witbracht, M. G., Laugero, K. D., Van Loan, M. D., Adams, S. H., & Keim, N. L. (2012). Performance on the Iowa Gambling Task is related to magnitude of weight loss and salivary cortisol in a diet-induced weight loss intervention in overweight women. *Physiology & Behavior*, 106(2), 291–297. http://dx.doi.org/10.1016/j.physbeh.2011.04.035
- Wong, C. L., & Mullan, B. A. (2009). Predicting breakfast consumption: An application of the theory of planned behaviour and the investigation of past behaviour and executive function. *British Journal of Health Psychology*, 14(3), 489–504. http://dx.doi.org/10.1348/135910708X360719
- Wong, I. Y., Mahar, D., & Titchener, K. (2015). Driven by distraction: Investigating the effects of anxiety on driving performance using the attentional control theory. *Journal of Risk Research*, 18(10), 1293–1306. http://dx.doi.org/10.1080/13669877.2014.919516