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PART A. PATH DEPENDENCE 

 

What causes agents to gravitate in one direction over the other? In this supplement, we show that agents’ preferences 

at equilibrium are path dependent and are not merely determined by agents’ initial random preferences. The results 

plotted in Panel A of Figure 4 in the main text already point in that direction. The figure plots the final correlation 

between agents’ preferences in a two-agent simulation, as a function of the initial correlation between their 

randomly generated preferences. As the plot shows, the final correlation is not determined by the initial correlation, 

except in extreme cases where the initial correlation is either strongly positive or strongly negative. 

 

As illustration that initial correlation between agents’ preferences does not determine the final correlation, we plot 

three randomly selected runs of the two-agent model in Panel A of Figure S1. The diagram plots the inter-agent 

preference correlation as a function of time (we plot only the first 200 iterations of the model for visualization 

purposes, as correlations tend to lock in beyond that point). The correlation patterns follow an erratic nonlinear path 

early on, often moving between negative and positive values. In one run, for example, the correlation increases 

beyond .5 before changing course and dropping toward –1. Eventually, all correlation patterns settle on a steady 

state once correlation nears 1 or –1. 

 

What determines these changes in inter-agent preference correlations? Panel B in Figure S1 plots the magnitude of 

change in the inter-agent preference correlation between two subsequent model iterations as a function of the 

magnitude of change in agents’ preferences (on a log scale). As we described in the main text, agents update their 

preferences in reaction to other agents’ behaviors. The magnitude and direction of this update is random, drawn 

from a normal distribution. Agents retain this update only if it does not decrease constraint satisfaction. As the plot 

in Panel B demonstrates, shifts in preference correlations are almost entirely driven by the magnitude of changes in 

agents’ preferences (r = .866). In other words, agents’ stochastic preference updating behavior drives changes in 

their congruence with others. 

 

Finally, to show that our results are not driven by initial inter-agent preference correlations, we ran a series of 

simulations of the two-agent model where agents’ preferences are initialized to be zero for all preferences (namely, 

agents begin the simulation with neutral preferences, and all agents have the exact same preferences). Panel C in 

Figure S1 plots the proportion of negative and positive final inter-agent preference correlations (based on 1,000 

simulations). Half the simulations tilt toward preference similarity, and half toward preference opposition. Thus, 

even when agents begin with identical preferences, the system still evolves stochastically. As the examples in Panel 

A illustrate, this stochasticity is not merely a function of the first several steps of the model. 

 

Together, these three analyses show that our results are not simply determined by initial random preferences. Rather, 

the evolution of preferences and their inter-agent correlations are path dependent, driven predominantly by 

stochastic preference updates that are motivated by agents’ desire to increase constraint satisfaction. Preferences 

determine outcomes only when their initial preference correlation is extremely strong. 

OFFICIAL JOURNAL OF THE AMERICAN SOCIOLOGICAL ASSOCIATION 

AMERICAN SOCIOLOGICAL REVIEW 



2 
 

PART B. NUMBER OF AGENT CLUSTERS AT EQUILIBRIUM 

 

The multi-agent simulations consistently converge on a two-cluster equilibrium, where agents are partitioned into 

two opposing groups. As we explained in the main text, this happens because the interpersonal two-stage 

transmission process gradually imposes structural balance on agents’ associative matrices. In this supplement, we 

provide more detail on how associative transmission leads to a two-cluster partition through structural balance, and 

we explore an alternative constraint function that produces a larger number of clusters. 

 

In graph theory, a signed graph is defined as structurally balanced when it does not contain any cycles with one 

negative edge. For ease of exposition, let us assume that two practices represented in an agent’s associative matrix 

can only be associated or dissociated. This is equivalent to a signed graph where nodes are connected by either 

unweighted positive or negative edges. Moreover, let us assume that agents have either unweighted positive or 

negative preferences. 

 

To see how constraint satisfaction imposes structural balance on agents’ associative matrices, consider a 

hypothetical agent’s associative matrix, illustrated as a graph in Figure S2. Let 𝑎, 𝑏 and 𝑐 be three different 

practices. The two edges connecting the pairs 𝑎 − 𝑏 and 𝑏 − 𝑐 correspond to positive associations between these 

practices, respectively. The absence of an edge between 𝑎 and 𝑐 indicates that the two practices are dissociated. The 

plus signs indicate the agent has positive preferences for all three practices. This set of preferences is constraint 

satisfying for edges 𝑎 − 𝑏 and 𝑏 − 𝑐. However, it is not constraint satisfying for the absence of edge 𝑎 − 𝑐, given 

that agents are forced to have different preferences for dissociated practices. To increase constraint, the agent can 

alter her preference for 𝑐 to negative, such that she will have different preferences for the dissociated practices 𝑎 and 

𝑐; but that would be inconsistent with edge 𝑏 − 𝑐, given that agents are constrained to have equal preferences for 

associated practices. 

 

Overall, the only way constraint can be increased is by altering the agent’s associative matrix and corresponding 

preferences to one of the four configurations illustrated in Figure S3 (Cartwright and Harary 1956). In our model, 

however, agents do not directly change their associative matrices to increase constraint. Rather, they only update 

associations in response to observed behaviors of other agents. Nevertheless, agents do update their preferences in 

response to these behaviors as a means to increase constraint satisfaction. Unlike the simple unweighted signed 

graphs in Figures S2 and S3, in our model agents’ associative matrices are, effectively, non-negative weighted 

graphs. This allows for gradual changes in constraint satisfaction.  

 

Ultimately, the mutually reinforcing dynamics of associative diffusion via interpersonal transmission lead to gradual 

increases in structural balance in agents’ associative matrices. As Cartwright and Harary (1956) show, graphs that 

fully satisfy the four basic conditions illustrated in Figure S3 are perfectly balanced, leading to a partition into two 

clusters. That is why when there are no limitations on agents’ ability to interact, associative diffusion results in 

cultural differentiation into two groups. 

 

The four configurations illustrated in Figure S3 correspond to the four fundamental assumptions of balance theory. 

If the edges connecting nodes 𝑎 − 𝑏 and 𝑏 − 𝑐 are given, then the edge 𝑎 − 𝑐 can only have the value specified in 

the diagram for the graph to be structurally balanced. As Davis (1967) shows, when assumption D (namely, if 𝑎 and 

𝑏 are dissociated, and 𝑏 and 𝑐 are dissociated, then 𝑎 and 𝑐 must be associated; conventionally referred to as “the 

enemy of my enemy is my friend” condition) is relaxed, a balanced graph can have more than two clusters. To 

explore this possibility, we conducted an additional set of analyses in which we relax the constraint function to apply 

to associative matrix elements only when the agent’s preferences for both practices are non-negative. To do so, we 

define: 

 

𝐶𝑆𝑟𝑒𝑙𝑎𝑥(𝑉, 𝑅) = 𝐾

𝐾(𝐾−1)
∑ ∑ 𝛿(𝑖, 𝑗)|𝑅𝑖𝑗 − Ω𝑖𝑗|𝐾

𝑗=1
𝐾
𝑖=1  (S1) 

 

where: 

 

𝛿(𝑖, 𝑗) = {
0, if 𝑣𝑖 < 0 &𝑣𝑗 < 0

1, otherwise
 (S2) 
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This alternative to constraint satisfaction is analogous to a relaxation of condition D in balance theory, but it is not 

perfectly identical to it. It has the desired property of permitting agents to have equally negative preferences for 

dissociated practices, allowing these practices to be in different clusters. At the same time, it also leads to an 

undesired property where agents can have different levels of negative preferences toward strongly associated 

practices. Overall, when implemented with relaxed constraint, associative diffusion takes significantly longer to 

reach equilibrium with 30 agents (roughly at 𝑡 = 500,000), resulting in 3.08 clusters, on average.  

 

Although this result explains why our model converges on two clusters, and under what conditions more than two 

clusters can emerge, we are hesitant to reach any further conclusions, as it is not obvious to us that this 

implementation is consistent with how constraint operates cognitively. In particular, because this implementation 

relaxes the assumption of symmetric constraint satisfaction, it can lead agents to have dramatically different 

negative preferences for practices that they perceive to be strongly associated. This property seems inconsistent with 

how constraint operates. We leave further exploration of constraint relaxation and its effects on associative diffusion 

for future work. 

 

PART C. ALTERNATIVE SPECIFICATIONS 

 

In the main paper, we report the results of simulations modeling a variety of alternatives to associative diffusion 

using different network topologies. We show these alternatives cannot explain the emergence of cultural variation 

unless a segregated small-world network structure is assumed. In this supplement, we provide details on how we 

implement these different contagion mechanisms and network topologies. 

 

Naive Contagion 

 

All interpersonal transmission mechanisms assume contagion occurs when agent 𝐵’s preference for practice 𝑖 
changes as a function of agent 𝐴’s preference, as described in Equation 8. The basic interpersonal transmission 

mechanism, which we refer to as naive contagion, occurs when 𝑉𝐵𝑖(𝑡 + 1) = 𝑉𝐴𝑖(𝑡). Most diffusion models in the 

literature assume that contagion is perfectly naive. 

 

The diffusion dynamics generated by this simple contagion mechanism are uninteresting for our purposes, given 

that, in the absence of structural barriers to diffusion, they will always lead to cultural homogeneity. We introduce 

two additions to the transmission model. First, and drawing on existing literature (e.g., Dandekar, Goel, and Lee 

2013; Friedkin and Johnsen 1990), we assume that a social susceptibility parameter 𝛼, ranging from 0 to 1, 

determines the extent to which agents are susceptible to influence. When 𝛼 = 0, agents are not affected by others’ 

behaviors, whereas when 𝛼 = 1 they fully adapt their preferences to others’. 

 

Second, we assume agents are unaware of others’ private preferences. Rather, they observe others’ behaviors and 

make inferences about their preferences. We define 𝛾 as the standard inference that an agent makes about another 

agent’s private preference for a practice 𝑖 when she observes that agent performing practice 𝑖. Together, we define 

naive contagion as follows: 

 

𝑉𝐵𝑖(𝑡 + 1) = (1 − 𝛼)𝑉𝐵𝑖(𝑡) + 𝛼𝛾 (S3) 

 

When 𝛾 = 𝑉𝐴𝑖(𝑡) agents have full knowledge of their interlocutors’ preferences. Such a model always leads to full 

preference convergence. When 𝛾 is fixed for agents, namely when agents always infer that another agent’s 

preference is fixed, all preferences eventually (and unsurprisingly) converge toward 𝛾. 

 

To add stochasticity, we assume that 𝛾 is randomly and uniformly drawn from the range [.1,1], that is, agents 

randomly infer other agents’ preferences. The results plotted in Panel A of Figure 6 in the main text are based on a 

specification of 𝛼 = .5 and random 𝛾. They are robust to different positive values of 𝛼. 

 

In the specifications that follow, we always assume that 𝛾 ranges from .5 to 1 (i.e., agents infer a moderate to strong 

preference). The results reported in the main text are robust to this assumption and are reproduced when we assume 

agents have full access to others’ preferences. Nevertheless, we believe a model assuming preference inference is 

more realistic than one in which agents have full access to others’ preferences, especially when interaction is 

assumed to be superficial, as is the case in our model. 



4 
 

 

Biased Contagion 

 

In the biased contagion condition, we model a process whereby agent 𝐵’s preexisting preferences mediate the 

effects of 𝐴’s behaviors. Following Dandekar and colleagues (2013), we implement biased contagion as a function 

of 𝐵’s prior preference for 𝑖, weighted by a bias parameter 𝛽 > 0. 𝛽 defines the extent to which 𝐵’s existing 

preferences mediate social transmission from 𝐴. As long as 𝛽 > 1, bias is positive. Like Dandekar and colleagues 

(2013), we define biased contagion as a ratio between 𝐴’s positive and negative effects on 𝐵’s preference for 𝑖, 
weighted by 𝛽, as follows: 

 

𝑉̌𝐵𝑖 (𝑡 + 1) =
(1−𝛼)𝑉̂𝐵𝑖(𝑡)+𝛼𝑉̂𝐵𝑖(𝑡)𝛽𝛾

(1−𝛼)+𝛼𝑉̂𝐵𝑖(𝑡)𝛽𝛾+𝛼(1−𝑉̂𝐵𝑖(𝑡))𝛽(1−𝛾)
 (S4) 

 

where 𝛼 is again a social susceptibility parameter ranging from 0 to 1. In the results reported in the main text, we 

assume 𝛼 = .5, but these results are robust to different values of 𝛼 as long as it is reasonably above 0 (roughly 𝛼 >
.1) such that some social influence occurs. 

 

Because the effect of bias is implemented as an exponentiation of 𝐵’s existing preference, following Dandekar and 

colleagues (2013) we transform this preference to a 0 to 1 range using the logistic function, such that 𝑉̂𝐵𝑖 (𝑡) =
1

1+𝑒−𝑉𝐵𝑖(𝑡). We then transform 𝑉̌𝐵𝑖 (𝑡 + 1) back into an infinite range using the logit function, 𝑉𝐵𝑖(𝑡 + 1) =

log
𝑉̌𝐵𝑖(𝑡+1)

1−𝑉̌𝐵𝑖(𝑡+1)
 so that it takes negative and positive values, in compliance with our model’s assumption about the 

range of preference values. This functional form has the desired behavior, such that values above 0 for 𝐵’s prior 

preference lead to a growing positive effect on that preference, and those below 0 to a growing negative effect. The 

results we report in Figure 6 in the main text are robust to different values of 𝛾 and 𝛽. 

 

Conformist Contagion 

 

In the conformist contagion condition, we model a process where 𝐵’s preference for 𝑖 is mediated by 𝐵’s taste for 

popularity and her perception of practice 𝑖’s rarity. To do so, we define two additional parameters. First, we define 

𝜔𝐵 as 𝐵′𝑠 taste for popularity, ranging from 0 to 1. We assign agents with a random taste for popularity, drawn from 

the inverse of a log normal distribution with a mean of log .15 and standard deviation of log 2. This ensures that the 

majority of agents are conformist (with half of agents having a taste for popularity at or greater than .85), and a 

minority are nonconformist. Second, we define 𝐵’s perception of practice 𝑖’s rarity as a function of how frequently 

she has observed other agents performing that practice. For each agent, we therefore define a K-sized vector 𝑂𝐵 that 

is initialized to 0, and where the value of cell 𝑖 increases by 1 whenever 𝐵 observes that practice enacted by others. 

Values in 𝑂 decay as a function of a decay parameter 𝜆. We can now define 𝜓𝐵𝑖 = 1 −
𝑂𝐵𝑖

max(𝑂𝐵)
 as 𝐵’s perception of 

practice 𝑖’s rarity. 

 

Building on Flache and Macy (2011), we define conformist contagion as follows: 

 

𝑉𝐵𝑖(𝑡 + 1) = 𝑉𝐵𝑖(𝑡) + (2 ⋅ |𝜔𝐵 − 𝜓𝐵𝑖| − 1)𝛾 (S5) 

 

This mechanism of contagion ensures that 𝐵’s preference changes as a function of the distance between her taste for 

popularity and her perception of the practice’s rarity, |𝜔𝐵 − 𝜓𝐵𝑖|. As that distance nears 1, that is, as the congruence 

between the practice’s perceived rarity and the agent’s taste for popularity grows, 𝐵 increases her preference for 

practice 𝑖. As the distance nears 0, 𝐵 decreases her preference for 𝑖. The results reported in Figure 6 in the main text 

are robust to different values for 𝛾, as long as it is positive. 

 

We also consider an alternative method of assigning tastes for popularity, where we dichotomously divide the 

population into conformists and nonconformists. We define the tastes for popularity for these two conditions as 𝜔 =
.95 (conformist) and 𝜔 = .05 (nonconformist), and we randomly assign 75 percent and 25 percent to each of these 

two conditions, respectively. Unlike the log-normal method, which generates a skewed distribution of taste for 

popularity, this dichotomous method generates a bimodal distribution. The results reported in Panel A of Figure 6 in 

the main text are robust to this specification, suggesting that even when there is a clear division into conformists and 
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nonconformists (such as in the case of early adopters who are distinctively and qualitatively different from 

mainstream audiences), a division into different cultural clusters does not emerge. 

 

In Panels B and C of Figure 6 in the main text, we explore the effects of extending the baseline associative diffusion 

model to account for variation in conformity (as specified in Equation 9). Panel B reports results from this model, 

where taste for popularity is generated using the log-normal method as detailed earlier. In Panel C, we run multiple 

simulations of the extended associative diffusion model where we vary the overall prevalence of conformity. To do 

so, we use the dichotomous method for generating taste for popularity, and we vary the proportion of conformists in 

each simulated run. For example, when the proportion of conformists is .6, 60 percent of agents have a high taste for 

popularity at 𝜔 = .95, and the remaining 40 percent have a low taste for popularity at 𝜔 = .05. As the plot shows, 

cultural differentiation emerges as long as the proportion of conformists is greater than roughly .15. 

 

Homophily 

 

In the homophilous contagion condition, we model a process where 𝐵’s change in preference for 𝑖 is mediated by 

𝐵’s perceived homophily with 𝐴. Consistent with our assumption of superficial interaction, we assume 𝐵 only has 

partial information about 𝐴’s other preferences. Specifically, 𝐵 observes 𝐴 perform only one additional practice, 𝑗. 

We define 𝐵’s homophily with 𝐴 as the perceived similarity between their preferences for 𝑗. 

 

Diffusion models that take into account the effects of cultural similarity on adoption normally calculate similarity in 

Euclidean space (e.g., Baldassarri and Bearman 2007). We build our implementation of homophily on DellaPosta, 

Shi, and Macy (2015). DellaPosta and colleagues’ model calculates the similarity between agents 𝐵 and 𝐴 as the 

difference between two distances: the Euclidean distance between the agents and the expected distance between two 

random agents drawn from the population. The probability of social influence, or the likelihood that 𝐵 will adopt 

𝐴’s preference, is proportional to the magnitude of that difference. In other words, the stronger the agents’ similarity 

or dissimilarity (relative to what would be expected at random), the greater the likelihood of social influence. When 

the agents are dissimilar (i.e. their distance is greater than expected) adoption is negative. But because negative 

influence is rarer than positive influence, it randomly occurs in only 10 percent of cases. 

 

We adapt this model to our setting, where preferences range from negative to positive values and where preferences 

are only partially observable. Although, unlike in DellaPosta and colleagues’ model, our agents do not observe 

others’ full set of behaviors, we assume they are aware of the private preferences for the behaviors they observe. We 

therefore define the social influence of 𝐴 on 𝐵 as the inverse of the absolute distance between their preferences for 

practice 𝑗: 

 

𝑊𝐵𝑗,𝐴𝑗(𝑡) = 1 − ||𝑉𝐵𝑗(𝑡)| − |𝑉𝐴𝑗(𝑡)|| (S6) 

 

Because preferences are initially drawn from the range –1 to 1, 𝑊𝐵𝑗,𝐴𝑗 ranges from 0 to 1. Equation S6 ensures that 

preferences remain within the –1 to 1 range. We define homophilous contagion as follows: 

 

𝑉𝐵𝑖(𝑡 + 1) = (1 − 𝑊𝐵𝑗,𝐴𝑗)𝑉𝐵𝑖(𝑡) + 𝑊𝐵𝑗,𝐴𝑗𝑉𝐴𝑖(𝑡) (S7) 

 

When 𝐴’s and 𝐵’s preferences for 𝑗 are differently signed, that is, one has a positive and the other a negative 

preference, we define homophilous contagion as follows: 

 

𝑉𝐵𝑖(𝑡 + 1) = (1 − 𝑊𝐵𝑗,𝐴𝑗)𝑉𝐵𝑖(𝑡) − 𝑊𝐵𝑗,𝐴𝑗𝑉𝐴𝑖(𝑡) (S8) 

 

We allow such influence to occur in only 10 percent of cases, as per DellaPosta and colleagues (2015). 

 

This implementation ensures that, like in DellaPosta and colleagues’ model, equally similar and dissimilar agents 

have influence of the same magnitude, but in opposite directions. Panel A of Figure 7 in the main text reports results 

using this model. 

 

To ensure the results reported in Figure 7 in the main text are not driven by specific assumptions, we also examine 

an alternative specification for the homophilous contagion process, which builds on and extends Flache and Macy 
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(2011). In this specification, we assume agents do not have access to interlocutors’ private preferences. We define 

alternative homophilous contagion as follows: 

 

𝑉𝐵𝑖(𝑡 + 1) = 𝑉𝐵𝑖(𝑡) + [2(1 − 𝛥𝐵𝑗(𝑡)) − 1]𝛥𝐵𝑖(𝑡) (S9) 

 

where 𝛥𝐵𝑖(𝑡) = 𝛾 − 𝑉̂𝐵𝑖 (𝑡) is the distance between 𝛾, which is what 𝐵 infers as 𝐴’s preference for an enacted 

practice, and 𝐵’s own preference for that practice (transformed to the 0 to 1 range as explained earlier, to comply 

with Flache and Macy’s [2011] model). This functional form ensures that as 𝐵’s preference for 𝑗 grows closer to her 

inference about 𝐴’s preference, she updates her preference for 𝑖 to be increasingly identical to her inference about 

𝐴’s preference. When her preference for 𝑗 is significantly lower than 𝛾, this update rule means she decreases her 

preference for 𝑖. Results using this specification replicate the results reported in Figure 7. 

 

Network Topologies 

 

We also explore associative diffusion in three different network topologies: a fully connected network, a scale-free 

network, and a small-world network. We implement these different topologies as directed graphs (with no self-

edges). In each simulation round, one observer agent, 𝐵, is randomly selected with uniform probability. The actor 

agent, 𝐴, is selected with uniform probabillity from the subset of agents to whom 𝐵 has an outgoing edge. In this 

subsection, we explain how the three network topologies are generated. 

 

The fully connected topology is a graph in which all potential edges are realized (with the exception of self-edges 

connecting a node to itself). Such a network implies that all edges have a uniform probability (equal to 
1

𝑁(𝑁−1)
) of 

being selected. This is equivalent to selecting an observer and actor with uniform random probability. 

 

A scale-free network is one in which node indegree follows a power law distribution such that the probability of 

nodes with 𝑘 incoming edges, 𝑃(𝑘) ∼ 𝑘−𝛼 . We generate networks where 𝛼 ranges from two to three and where each 

node has an outdegree of six. To generate such a network, we randomly assign all nodes with a popularity score that 

follows a power law distribution. We then iterate over all nodes, and we assign them with six random outgoing 

edges to other nodes with a probability proportional to these nodes’ popularity. Such a process generates a network 

wherein each agent can observe only six other agents, but agents vary significantly in how many agents can observe 

them. 

 

A small-world network topology is one in which nodes are segregated into clusters. Following Watts (1999), we 

implement a connected caveman topology with five clusters. To do so, we randomly divide the network into five 

equally sized and fully connected cliques. We then randomly rewire 10 percent of the edges in the network, by 

randomly selecting two edges and swapping their destination nodes. This generates edges that bridge between 

different cliques. The procedure we follow is similar to the procedure in DellaPosta and colleagues (2015). 

 

An important feature of the network generation processes we implement is that both the scale-free and small-world 

networks have the same overall number of edges and the same node outdegrees. That is, in both types of networks, 

each agent can observe the same number of other agents. These networks differ, however, in how these edges are 

distributed. In the scale-free topology, a small number of agents account for the majority of indegrees. In the small-

world topology, indegrees are equally distributed. 
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Figure S1. Path Dependence in the Two-Agent Model 

Note: (A) Examples of the evolution of inter-agent preference correlation from three random 
simulation runs. (B) Changes in inter-agent preference correlation as a function of stochastic 
preference updates. (C) The proportion of negative and positive final inter-agent preference 
correlations when agents are initialized to have uniform 0 preferences. 

 

Figure S2. Illustration of Structural Imbalance in a Triad Contained in an Agent’s Associative 
Matrix  

Note: The three nodes correspond to practices, which are either connected by an edge 
(associated) or not (dissociated). Plus signs represent the agent’s positive preference toward 
these practices. 
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Figure S3. Four Configurations of Balanced Triads in an Agent’s Associative Matrix 

Note: Nodes correspond to practices, which are either connected by an edge (associated) or not 
(dissociated). The boxed plus and minus signs correspond to the preferences the agent must 
have in order to reach balance. For each configuration, preferences must adhere to either the 
black or white boxes to satisfy constraint. For example, in Panel A, the agents must have either 
positive or negative preferences for all practices. 
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