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Appendix A. Supplemental Methods

Appendix A.1. Application of linear INMB to HCV screening example

A schematic of the decision problem is presented in Figure 2.

Let λ be the willingness-to-pay threshold, q1 the test sensitivity, q2 the test specificity,

CS > 0 the cost of the screening test, BS 6 0 the quality-of-life loss from the screening test,

CFP > 0 the cost of correcting a false-positive test result, BFP 6 0 the quality-of-life loss

from a false-positive test result. Furthermore, the lifetime discounted costs and benefits of

the true-positive, false-negative, and true-negative screening outcomes are denoted by C1,

C2, C3, and B1, B2, B3, respectively.

The net monetary benefit (NB) of the decision not to screen cohort t is

NBNoScreening = λ (p̃tB2 + (1− p̃t)B3)− (p̃tC2 + (1− p̃t)C3) . (A.1)

The net monetary benefit of the decision to screen cohort t is

NBScreening =λ (p̃tq1B1 + p̃t(1− q1)B2 + (1− p̃t)(1− q2)(B3 +BFP ) + (1− p̃t)q2B3 +BS) (A.2)

− (p̃tq1C1 + p̃t(1− q1)C2 + (1− p̃t)(1− q2)(C3 + CFP ) + (1− p̃t)q2C3 + CS) .

1



The incremental net monetary benefit (INMB) of screening compared to the alternative

of not screening is computed as the difference between Eq. (A.2) and Eq. (A.1):

INMBScreening =NBScreening −NBNoScreening

=λ (p̃tq1B1 + p̃t(1− q1)B2 + (1− p̃t)(1− q2)(B3 +BFP ) + (1− p̃t)q2B3 +BS)

− (p̃tq1C1 + p̃t(1− q1)C2 + (1− p̃t)(1− q2)(C3 + CFP ) + (1− p̃t)q2C3 + CS)

− (λ (p̃tB2 + (1− p̃t)B3)− (p̃tC2 + (1− p̃t)C3))

=p̃t (q1 [λ(B1 −B2)− (C1 − C2)]− (1− q2) [λBFP − CFP ])

+ λBS − CS + (1− q2)(λBFP − CFP )

With the terms collected, it is clear that INMB of screening compared to no screening at

time t can be written INMBt = θ̃tp̃t − γ where,

θ̃t = q1 [λ(B1 −B2)− (C1 − C2)]− (1− q2) [λBFP − CFP ] > 0

and

γ = CS − λBS − (1− q2)(λBFP − CFP ) > 0.
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Appendix A.2. Linear decomposition of θ̃t into a function of F̃t

We decompose θ̃t, the marginal benefit from early diagnosis and treatment, into a linear

function of F̃t, the fibrosis-stage distribution at screen-detected diagnosis.

The lifetime discounted costs and quality-adjusted life-years for an HCV-positive indi-

vidual (C1, C2, B1, and B2) are each linear functions of F̃t. As an example, we can write

C1 = C1,F0F̃0,t + C1,F1F̃1,t + C1,F2F̃2,t + C1,F3F̃3,t + C1,F4F̃4,t,

where C1,F0, C1,F1, C1,F2, C1,F3, and C1,F4 are the lifetime discounted costs for an HCV-

positive individual diagnosed through screening at age 50 at fibrosis stage F0, F1, F2, F3,

and F4, respectively.

Using symmetric notation for the expanded forms of C2, B1, and B2, we can write θ̃t as

a linear function of F̃t:

θ̃t =q1 [λ(B1 −B2)− (C1 − C2)]− (1− q2) [λBFP − CFP ]

=q1[(λ(B1,F0 −B2,F0)− (C1,F0 − C2,F0)) F̃0,t + (λ(B1,F1 −B2,F1)− (C1,F1 − C2,F1)) F̃1,t

+ (λ(B1,F2 −B2,F2)− (C1,F2 − C2,F2)) F̃2,t + (λ(B1,F3 −B2,F3)− (C1,F3 − C2,F3)) F̃3,t

+ (λ(B1,F4 −B2,F4)− (C1,F4 − C2,F4)) F̃4,t]− (1− q2) [λBFP − CFP ] .

Since θ̃t is a linear function of F̃t, INMBt is also a linear function of F̃t.
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Appendix A.3. Recursive Partitioning to Create ‘Representative’ Posterior Fibrosis-Stage

Distributions

We used recursive partitioning regression to identify classes of similar posterior distri-

butions [50]. Recursive partitioning is a technique that builds a classification rule with the

objective of identifying homogeneous strata through a process in which the population is

divided into smaller and smaller samples (“nodes”). Our initial ‘population’ consisted of

200, 000 simulated realizations of w̃t(mt = 200, yt = y0). For each realization, we computed

the corresponding posterior distribution, ŷt, and the marginal benefit from early diagnosis

and treatment, θ̃t(ŷt), which we used as our measure of similarity in the recursive parti-

tioning regression. To identify which variable provides the best split, we used the ANOVA

method which uses the splitting criteria SST − (SSL + SSR), where SST is the total sum of

squares for the current node and SSR and SSL are the total sums of squares for the right

and left sons, respectively. This criterion is equivalent to choosing the split to maximize the

between-groups sum-of-squared differences in a simple analysis of variance [63]. A split is

only considered if at least 20 realizations will be in each son node and the increase in R2

is greater than 0.01. The procedure ends when neither of these conditions can be satisfied.

Applying the recursive partition to the 200, 000 simulated studies resulted in 24 posterior

distribution classifications (Figure A.1).

The probability mass functions of the ‘representative’ posterior distributions were deter-

mined using the average proportion of each fibrosis-stage among members of each classifica-

tion (Figure A.2A). The probability of each representative posterior was determined using

the frequency of its classification (Figure A.2B). The expected value of collecting informa-

tion about F̃t was then the value of the optimal action given each possible representative

posterior, weighted by the probability of that posterior.
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Figure A.1: Simplified schematic of recursive partitioning tree used to classify possible posterior distributions from a study of the fibrosis-stage
distribution. Fibrosis stages are denoted by F0, F1, F2, F3, F4. The probability mass functions over fibrosis stages are classified by the probability of
individuals being in fibrosis stages 3 or 4 (F3 + F4), then on the probability of individuals being in F0, then further on the probability of being in F2

and/or F4.
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Figure A.2: (A) Probability mass function for each of the 24 ‘representative’ posterior distributions de-
termined through recursive partitioning regression. (B) Proportion of the 200, 000 simulated studies of
fibrosis-stage distribution (mt = 200) in each posterior distribution classification determined through recur-
sive partitioning regression.

Appendix A.4. Two-Stage Markov Decision Process

We identified the optimal mapping from beliefs about p̃t and θ̃t to actions using value

iteration in two stages (Figure A.3). First, we identified the optimal mapping from beliefs

about p̃t to actions for each possible posterior distribution from a study of θ̃t. In this

stage, only the three classes of actions were considered: ‘do not screen and do not collect

information’, ‘screen and do not collect information’, ‘screen and collect information about

p̃t’. The results of the first stage were used to determine the expected value of the actions

‘screen and collect information about θ̃t’ and ‘screen and collect information about p̃t and

θ̃t’ in stage two. In the second stage, we identified the optimal mapping from beliefs about

p̃t to actions given θ̃0 and we considered all five possible classes of actions: ut = (0, 0, 0), ‘no

intervention (and do not collect sample information)’ ; ut = (1, 0, 0), ‘do intervention and do

not collect sample information’ ; ut = (1, nt, 0), ‘do intervention and sample nt individuals

to learn about p̃t’ ; ut = (1, 0,mt), ‘do intervention and sample mt individuals to learn about

θ̃t’ ; ut = (1, nt,mt), ‘do intervention, sample nt individuals to learn about p̃t, and sample mt

individuals to learn about θ̃t’.
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Figure A.3: Schematic of the two-stage approach to numerical implementation of the dynamic program.
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Appendix B. Supplemental Results

Appendix B.1. Optimal time to stop intervention without information collection

We summarize these findings from [26] extending the notation to consider an uncertain

θ̃, so we can refer to the equations in the next section.

If information is prohibitively costly or practically infeasible to collect, Eq. (3) simplifies

to

VNoInfo(x, y) = max
d∈{0,1}

{d(µθ(y)µp(x)− γ) + δVNoInfo(φ(x), y)},

for all (x, y), as there is no Bayesian updating and ψx and ψy reduce to identity maps. For

all states (x, y) for which the optimal strategy is to stop (i.e., not to do the intervention),

stopping remains optimal in the future because of the decreasing trend of p̃t. Indeed, since

for z ∈ (0, 1), µp(φ(x)) = zµp(x) < µp(x), we have that for all states where VNoInfo(x, y) = 0,

it is also the case that VNoInfo(φ(x), y) = 0. Hence, for µp(xt) ≤ γ
µθ(yt)

it is optimal to stop

the intervention.

Restricting attention to the interesting case where µ(x0) ≥ γ
µθ(y0)

and using the fact that

µp(xt) = ztµp(x0), we can identify the optimal time to stop the intervention, T (p̃(x0), θ̃(y0)),

which is the first period in which the intervention has a nonpositive expected INMB. Specif-

ically, we seek the minimum value of t such that E[g(p̃t, θ̃t, ut)] = 0:

E
[
g(p̃t, θ̃t, ut = (dt = 1, nt = 0,mt = 0))

]
= 0

µθ(y0)µp(xt)− γ = 0

µθ(y0)z
tµp(x0)− γ = 0

zt =
γ

µθ(y0)µp(x0)

t =
1

ln(z)
ln

(
γ

µθ(y0)µp(x0)

)
.
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Since decisions can only be made at discrete time intervals, we identify the optimal time

to stop the intervention, T (p̃(x0), θ̃(y0)), as the first integer period in which the intervention

has a nonpositive INMB

T (p̃(x0), θ̃(y0)) =

⌈
1

ln(z)
ln

(
γ

µθ(y0)µp(x0)

)⌉
. (B.1)

Finally, given any initial state (x0, y0), the value of implementing the optimal stopping

policy for t ∈ {0, ..., T (p̃(x0), θ̃(y0))− 1} is given by

VNoInfo(x0, y0) =

T (p̃(x0),θ̃(y0))−1∑
t=0

δt
(
µθ(y0)z

tµp(x0)− γ
)

(B.2)

= µθ(y0)µp(x0)

(
1− (δz)T (p̃(x0),θ̃(y0))

1− δz

)
− γ

(
1− δT (p̃(x0),θ̃(y0))

1− δ

)
.

Appendix B.2. Proof of Main Result

Proposition. For the case where information about the time-varying parameter, p̃t, is pro-

hibitively costly or practically infeasible to collect, it may be optimal to delay information

collection about the time-invariant parameter, θ̃t.

Proof. Consider θ̃t ∈ {θL, θH}, where θL < θH and the probability that θ̃t = θH is y0 ∈

(0, 1). Perfect information about θ̃t is available at any time at a positive cost κy. Given the

prior belief (x0, y0), the optimal time to stop the intervention without information collection

is denoted T (p̃(x0), θ̃(y0)) and determined using Eq. (B.1). With perfect information, the

optimal time to stop the intervention is T (p̃(x0), θL) or T (p̃(x0), θH), where T (p̃(x0), θL) 6

T (p̃(x0), θ̃(y0)) 6 T (p̃(x0), θH).

For t1 ∈ [0, T (p̃(x0), θL) − 1], we calculate the value of acquiring additional information

at time t1 by subtracting the expected value without information from the expected value

with information collected at t1. Canceling out common terms we obtain

VOI1(t1) = y0

 T (p̃(x0),θH)−1∑
t=T (p̃(x0),θ̃(y0))

δt(θHµp(xt)− γ)

− (1− y0)

T (p̃(x0),θ̃(y0))−1∑
t=T (p̃(x0),θL)

δt(θLµp(xt)− γ)

 .
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The first term represents the gain in value associated with continuing the intervention

until T (p̃(x0), θH) − 1 rather than stopping at time T (p̃(x0), θ̃(y0)) after learning that θ̃t =

θH . The second term represents the consequences avoided by learning that θ̃t = θL and,

therefore, stopping the intervention at time T (p̃(x0), θL) rather than stopping later at time

T (p̃(x0), θ̃(y0)). Note that the sum in the second term is negative since θLµp(xt)− γ < 0 for

t > T (p̃(x0), θL).

If VOI1(t1) − δt1κy > 0 for any t1 ∈ [0, T (p̃(x0), θL) − 1], then the optimal action is

to delay information collection (at least) until T (p̃(x0), θL) − 1 because VOI1(t1) does not

depend on t1 while δt1κy is decreasing in t1.

For t2 ∈ [T (p̃(x0), θL)−1, T (p̃(x0), θH)−1], we calculate the value of acquiring additional

information at time t2 by subtracting the expected value without information from the

expected value with information collected at t2. Canceling out common terms we obtain

VOI2(t2) = y0

 T (p̃(x0),θH)−1∑
t=T (p̃(x0),θ̃(y0))

δt(θHµp(xt)− γ)

− (1− y0)

T (p̃(x0),θ̃(y0))−1∑
t=t2+1

δt(θLµp(xt)− γ)

 .

The first term represents the gain in value associated with continuing the intervention until

T (p̃(x0), θH) − 1 after learning that θ̃t = θH . The second term represents the consequences

avoided by immediately stopping the intervention after learning that θ̃t = θL.

If VOI2(t2)−δt2κy > 0 for any t2 ∈ [T (p̃(x0), θL)−1, T (p̃(x0), θH)−1], then there exists a

unique optimal time, t∗Info(x0, y0), to acquire perfect information about θ̃ at cost κy because

V OI2(t2) and δt2κy are both decreasing in t2. We find the optimal time by solving for the

period where we prefer collecting information immediately to waiting an additional period.

Specifically, we find t2 such that

V OI2(t2)− δt2κy > V OI2(t2 + 1)− δt2+1κy.

Through algebraic rearrangement, we obtain

t∗Info(x0, y0) =

⌈
1

ln(z)
ln

(
γ

θLµ(x0)
− (1− δ)κy
δ(1− y0)θLµ(x0)

)⌉
. (B.3)
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Comparing Eq. (B.3) to T (p̃(x0), θL) reveals it may be optimal to delay information

collection because t∗Info(x0, y0) > T (p̃(x0), θL). The intuition is that because of the time

value of money, it is beneficial to delay information about even a static parameter until a

time when the information is likely to become decision-relevant. �

Appendix B.3. Properties of the value function which guarantee a unique solution

When information is available about p̃t and θ̃t in any period, the state space is compact

in terms of µp(xt), σ
2
p(xt), and µθ(yt). Therefore, a unique optimal set of actions exists if

the optimal value function is monotonic (i.e., nondecreasing) in each of µp(xt), σ
2
p(xt), and

µθ(yt) for each possible action. This is true in this case because the current-period reward is

nondecreasing and the transitions are stochastically nondecreasing in each of µp(xt), σ
2
p(xt),

and µθ(yt) for each action [64]. The unique solution can then be identified for specific cases

using numerical methods.
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