Supplementary Material

Methodological Details

ADC-map-Textural Features Database Creation of ADC-Maps and Computation of RF-Classifiers

The processing pipeline <u>of our dedicated CARD-application</u> included the following steps: (i.) leading_Loading_of ADC maps boated in the file system; (ii.). ADC-map normalization which is performed by definition of a contour in normal appearing white matter (NAWM); the ADCmaps are scaled such, that *mean* value of the ADC-map pixels within this NAWM-contour is set to a predefined reference value. This data normalization is necessary to eliminate difference in signal levels in the ADC-maps recorded on different MR-scanners and head coil setups; (iii.) After normalization, the <u>neuro</u>radiologist defines within each slice in which the tumor is visible a contour around the *complete* tumor affected zone. Per image <u>and lesion</u> a total of 94 texture parameters (to be described in more detail below) were determined <u>computed</u> for each patient. A by the *number-of-pixels-of-each-contour* weighted texture <u>Averages of texture</u> parameters were <u>computed</u> <u>averages</u> over the complete lesion <u>appearing in multiple images; each average being a weighted average with the weighting</u> <u>factor being the number of pixels in each slice.</u> <u>for eE</u>ach texture parameters is computed and_stored, together with the patients' age, into a feature database.__For each differential diagnosis pair, a separate Random Forests classifier has been computed.

Computed Texture Features

From the normalized ADC-map the following texture maps are computed for each pixel based on a 5x5 pixel neighborhood (all texture maps are indicated in CAPITAL BOLD symbols): Histogram based maps: (<u>a.</u>) ADC-map itself (ORIG); (<u>b.</u>) local AVERaged; c. local VARIance; d. local ST and ard DEViation; (<u>e.</u>) local SKEWhess; (<u>f.</u>) local KURTosis; (<u>g.</u>) local VAriance-of-VAriance. Additionally the following Cooccurence ^{1,2} matrix based texture maps

are computed: (h.) Angular Secondary Moment (CASM); (i.) C-matrix MEAn (CMEA); (j.) Cmatrix CONtrast (CCON); (k.) C-matrix DISsimilarity (CDIS); (I.) C-matrix HOM ogeneity (CHOM); (m.) C-matrix MAX-probability (CMAX); (n.) C-matrix ENTropy (CENT); (o.) Cmatrix ENErgy (CENE); (p.) C-matrix VARiance (CVAR); (q.) C-matrix CORrelation (CCOR). Note that from each ADC-map, 17 derived texture maps are computed, and the exact relationship between the original ADC-map, texture parameter maps and texture parameters are displayed in Figure 3 of the main text. From these maps a total of 94 texture parameters were computed. In the main text of the article an example of an ADC-map with its associated 17 texture maps are displayed in Figure 1 for a patient having a PA. h this study the raters defined contours that surrounded the complete tumor affected volume, including cystic components, edema and high celular density tumor areas. These contours are used to demark the lesion in all texture maps. For each set of pixels defined in each texture map that is enclosed by the user defined contour, the following statistical texture-parameters (indicated in small italic symbols) were derived: (i.) mean, (ii.) standard deviation (stdev), (iii.) variance (var), (iv.) skewness (skew); (v.) kurtosis (kurt) and (vi.) variance of variance (vava) are computed. This results in a theoretical maximum of 17 x 6 = 102 computed texture parameters from which a total of 94 texture parameters were used (without the variance of variance parameters) as input for the RF-classifiers. In Suppl_Mat_Figure 2 the relationship between the ADC-maps, computed texture maps, and computed texture parameters is displayed. For example the textural feature CENT-kurt is the kurtosis of the cooccurence entropy map ³.

References Supplementary Material

1.	Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification.
	IEEE Trans Syst Man Cybern 1973; SMC-3: 610–621.
2.	Haraick RM Statistical and structural approaches to texture. Proc IEEE 1979; 67: Formatted: Dutch (Netherlands)
	786–804.
3.	Slotboom J, Pedrosa de Barros N, Bauer S, et al. Computer Aided Radiological
	Diagnostics: Random Forest Classification of Gloma Tumor Progression using Image
	Texture Parameters derived from ADC-Maps. h: Proceedings 23rd Scientific Meeting,
	International Society for Magnetic Resonance in Medicine. Toronto

https://www.ismmorg/15/program_files/WedTP05.htm (2015).