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Showup Experiment Testing a Diagnostic-Feature-Detection Mechanism 

 

Colloff, Wade, and Strange (2016) measured people’s ability to discriminate between 

innocent and guilty suspects in fair versus unfair lineups. Subjects first watched a video in 

which a culprit with a distinctive feature, such as a black eye, committed a simulated crime. 

In the unfair lineup (our do-nothing condition), the suspect, whether innocent or guilty, had 

that distinctive feature, but none of the foils did. In the fair lineups, either everyone in the 

lineup had the distinctive feature (replication condition) or no one did (block condition and 

pixelation condition; see Colloff et al., 2016, Figure 1). Subjects were asked to identify the 

culprit that they had seen in the video, and they were much less likely to choose the suspect 

(innocent or guilty) when the lineup was fair. This is a well-known phenomenon that reflects 

increased filler-siphoning in fair lineups. Crucially, the use of fair lineups also increased 

people’s ability to discriminate between innocent and guilty suspects—an outcome that is 

uniquely predicted by the diagnostic-feature-detection theory (Wixted & Mickes, 2014; see 

also Colloff, Wade, Wixted, & Maylor, 2017). 

To further test the prediction made by the diagnostic-feature-detection theory, we reran 

two conditions tested by Colloff et al. (2016), but we removed the foils from the 

identification procedure. That is, we tested our original block (fair) versus do-nothing (unfair) 

conditions, but we used showups instead of lineups. In a showup, subjects are tested with a 
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single suspect who is either innocent or guilty. In the "fair" (block) showup condition, neither 

the innocent nor the guilty suspect had a visible distinctive feature, as in the corresponding 

block condition of Colloff et al. (2016). In the "unfair" (do-nothing) showup condition, both 

the innocent suspect and the guilty suspect had the distinctive feature, as in the corresponding 

do-nothing condition of Colloff et al. (2016). The key premise of the diagnostic-feature-

detection account is that procedures that prevent reliance on non-diagnostic features (those 

features shared by innocent and guilty suspects) improve people’s ability to discriminate 

between innocent and guilty suspects (i.e., increase dInnocent-Guilty). Thus, a diagnostic-feature-

detection mechanism predicts that dInnocent-Guilty will be larger in fair showups than unfair 

showups because in fair showups subjects cannot rely on the non-diagnostic distinctive 

feature so they will be less likely to confuse innocent and guilty suspects. Critically, the 

diagnostic-feature-detection theory makes this prediction for the same reason it made that 

prediction in the corresponding lineup condition in the Colloff et al. (2016) study. In both 

cases, the prediction has nothing to do with identifications of foils. If dInnocent-Guilty is indeed 

larger in fair showups than unfair showups, then this difference could not have arisen from a 

differential filler-siphoning mechanism. However, if our original result were due to filler-

siphoning or to any filler-dependent phenomenon, then the predicted effect should no longer 

be observed.  

 

Method 

Design 

We used a 2 (showup type: block, do-nothing) × 2 (target: present, absent) mixed 

design, with target manipulated within subjects. We collected two data points per subject 

because each subject watched two mock crime videos and completed two identification tasks 

(one target-present, one target-absent). ROC analyses in lineup research requires large 

samples, but the techniques for conducting power analysis are not well defined. ROC lineup 

studies usually recruit between 300 and 500 subjects per condition. Therefore, our data 

collection stopping rule was to recruit at least 2,000 subjects with useable data, so that we 

had at least 500 subjects in each condition. Using the mean difference and standard 

deviations observed in our original lineup study as a guide (Colloff et al., 2016), a power 

analysis indicated that, with 500 subjects per condition, power for this showup experiment 

would exceed 80%. We pre-registered our study before we started data collection and our 

data are available online (see https://osf.io/nr24b/). 

https://osf.io/nr24b/
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Subjects 

The subjects were 2,368 adults who completed the task online. In total, we excluded 

290 subjects (12%; between 64 and 91 in each of the eight cells) because they experienced 

technical difficulties while watching the video (n = 25, <1%), stated that they had viewed the 

videos before or completed the study more than once (n = 210, 9%), or incorrectly answered 

an attention-check question on the content of the video (n = 55, 2%). These exclusions 

resulted in a final sample size of 2,078; with between 518 and 522 subjects in each of the 

eight cells (884 male, 1,133 female, 61 other or prefer not to say; age range = 17–78 years, M 

= 33.59, SD = 12.40). The majority of the sample self-identified as Caucasian (52.60%), the 

remainder identified as Asian (24.92%), Latin, Hispanic, or Mexican-American (8.47%), 

Black, African, African-American or Caribbean (5.92%), Filipino (0.87%), Native-American 

(0.67%), or Other (4.91%), while 1.64% chose not to disclose their race or ethnicity. Of the 

final sample, 1,667 subjects were recruited via Amazon Mechanical Turk and received $0.35, 

380 were recruited via snowball sampling from social-networking sites and email 

advertisements and were entered into a prize drawing for a £25 Amazon voucher, and 31 

students were recruited from John Jay College of Criminal Justice and received extra credit in 

a course. We combined all data for the analyses. 

 

Materials 

The materials were from Colloff et al. (2016). We used two 30 s mock crime videos. In 

the mugging video, the male culprit had a tribal tattoo on his cheek. In the graffiti video, the 

male culprit had a black-eye. Target-present showups were an image of the guilty suspect 

(i.e., the culprit from the video), whereas target-absent showups were an image of an 

innocent suspect (i.e., not the culprit from the video). Colloff et al. compiled a pool of 40 

matched-to-description faces for each culprit. For each subject, we randomly selected an 

individual from these pools to serve as the innocent suspect. In fair (block) showups, the area 

of the culprit’s distinctive feature was concealed by a solid black rectangle. In unfair (do-

nothing) showups, the suspect had a visible distinctive feature. 

 

Procedure 

Subjects were told that the study was about perception and memory and were randomly 

assigned into conditions. First, subjects watched a mock crime video (mugging or graffiti) 

labelled as “Video A.” We told subjects that they should pay close attention, because they 
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would be asked questions about the content of the video. Following the video, we asked 

subjects if they experienced any technical difficulties while playing the video, and then gave 

subjects 4 min to complete some spatial reasoning questions. 

After 4 min, the study automatically advanced and we told subjects: “On the next page 

you will be presented with a photograph which may or may not be the male perpetrator you 

saw in Video A.” On the next page, a single image of the suspect was displayed. The showup 

technique (block or do-nothing) and format (target-present or target-absent) depended on the 

condition to which the subject had been randomly assigned. We asked subjects whether or 

not the person in the photograph was the person that they saw in Video A and then asked 

them to rate their confidence in their identification decision on an 11-point Likert-type scale 

ranging from 0% (completely uncertain) to 100% (completely certain). Following these 

questions, we asked subjects to answer an attention-check question about the content of the 

video. 

Next, we had subjects complete the same sequence of tasks again, this time viewing the 

alternate mock crime video (mugging or graffiti) and showup format (target-present or target-

absent). Here, the video and tasks were labelled as “Video B.” Subjects remained in the same 

showup technique condition to which they had been assigned: Subjects who were presented 

with a fair (block) showup after “Video A,” for instance, were also presented with a fair 

(block) showup after “Video B.” The order of the videos and target conditions was 

counterbalanced. At the end of the study, we checked if subjects had seen either of the videos 

before and we asked several demographic questions (e.g., age, gender, ethnicity). 

 

Results & Discussion 

To date, ROC lineup studies have focused on the performance of subjects who made an 

identification (i.e., subjects who responded: “Yes, that is the culprit”) and the diagnostic-

feature-detection theory was developed to account for these findings. As such, we specified 

in our pre-registration that our showup analysis would be performed on Yes responses. That 

is, in our pre-registration, we specifically stated that we would construct partial ROC curves 

and measure partial Area Under the Curve (pAUC) by plotting the hit rate (HR; subjects who 

made an identification of a guilty suspect ÷ number of target-present showups) against the 

false alarm rate (FAR; subjects who made an identification of an innocent suspect ÷ number 

of target-absent showups) over decreasing levels of confidence. We also stated that we would 

fit a signal-detection model using counts of hits from target-present showups and false alarms 
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from target-absent showups. ROC showup studies, however, also allow for the analysis of 

subjects who respond: “No, that is not the culprit”, because subjects who respond No can rate 

how confident they are that the suspect is not the culprit. This means that full ROC curves 

(which extend to HR = 1 and FAR = 1) can be constructed and the full Area Under the Curve 

(AUC) can be measured. Correspondingly, a signal-detection model can be fit to the full 

ROC data. Here, we report both our pre-registered analysis on Yes responses (pAUC and 

modelling) as it directly corresponds to how we analysed the lineup data in our original 

study, followed by additional analyses (AUC and modelling) based on the full ROC data. 

 

Yes Responses: Partial Area Under the Curve (pAUC) Analysis 

Figure 2A in our main reply shows the partial ROC curves. We used the statistical 

package pROC (Robin et al., 2011) with RStudio (RStudio Team, 2015) and the R software 

environment (R Development Core Team, 2015) to calculate pAUC and D, a measure of 

effect size: D = (AUC1 – AUC2)/s, where s is the standard error of the difference between 

the two AUCs and is estimated using bootstrapping. We defined the specificity (1 – FAR) 

using the smallest false alarm rate (FAR) range in the comparison (i.e., specificity = .77). As 

reported in our main reply, people were better able to discriminate between innocent and 

guilty suspects in fair than unfair showups. This pattern of results was observed in both the 

mugging and graffiti stimulus sets, which indicates that our findings are not driven by one 

particular set of encoding and test conditions (these analyses are available at 

https://osf.io/nr24b/). Note that defining the specificity using the smallest FAR range means 

that the pAUC analysis only includes the identification decisions made with the highest 

confidence levels in the unfair showup condition. Limiting the pAUC analysis to a small 

subset of the unfair curve did not affect our conclusions. We found the same results when we 

fit a signal-detection model to our data, which includes responses made at every confidence 

level in fair and unfair showups. We describe this model-fitting next. 

 

Yes Responses: Signal-detection Model 

A pAUC analysis is atheoretical and need not agree with the interpretation provided by 

fitting a signal-detection model to the ROC data. Therefore, we fit a signal-detection model 

to further confirm our findings. This signal-detection-based analysis is the one that bears 

most directly on the key prediction made by the diagnostic-feature-detection account (i.e., 

that dInnocent-Guilty should be higher in fair showups), because a model-based analysis allows us 

https://osf.io/nr24b/
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to directly measure dInnocent-Guilty. The signal-detection model for showups assumes two 

Gaussian distributions representing the memory strength values for innocent suspects and 

guilty suspects. The distance between the µinnocent and µguilty distributions (dInnocent-Guilty) 

reflects ability to discriminate between innocent and guilty suspects. The model also assumes 

that there is a set of response criteria that reflect different levels of confidence. To reduce the 

number of parameters, we combined confidence ratings of Yes 0-20 (c1), Yes 30-40 (c2), Yes 

50-60 (c3), Yes 70-80 (c4), and Yes 90-100 (c5) to create a 5-point confidence scale. The 

model assumes that a positive (Yes) identification is made when the suspect’s face is familiar 

enough to exceed c1, and the confidence in the identification is determined by the highest 

criterion that is exceeded. 

We fit an unequal-variance model, because this provided a significantly better fit to the 

data than an equal-variance model, as is typically true of list-memory tasks involving single 

test items. Usually, in list-memory studies, σtarget (analogous to σguilty here) is greater than 1, 

but here the analogous parameter was estimated to be less than 1. This result is to be expected 

because the target (i.e., the guilty suspect) was fixed across participants, whereas the innocent 

suspect was randomly selected from a pool of faces and therefore varied across participants. 

This additional source of item variance would be expected to (and did) increase the variance 

of the innocent suspect distribution relative to the guilty suspect distribution. Hence, σguilty 

should be (and was) less than 1.1 Moreover, it is clear from Figure that responding is more 

liberal in the unfair (do-nothing) showup than the fair (block) showup. Therefore, to 

minimize the number of free parameters, we also constrained the confidence criteria across 

the fair and unfair showup conditions using an additive factor. The model had 9 parameters 

(µguilty(fair), µguilty(unfair), c1, c2, c3, c4, c5, σguilty, and the additive factor) and both the fair and 

unfair showups had 10 degrees of freedom in the data (5 levels of confidence for guilty 

suspect identifications and 5 levels of confidence for innocent suspect identifications). Thus, 

the fit of the model to the data involved 20 – 9 = 11 degrees of freedom. We fixed µinnocent and 

σinnocent to 0 and 1, respectively. Once the frequencies of positive identifications were entered 

into the model, the frequencies of reject identifications were fixed. We fit the model to the 

data by minimizing the chi-square goodness-of-fit statistic. 

We first fit the unequal-variance model allowing dInnocent-Guilty to differ across the fair 

                                                 
1 Note that we set σguilty to be the same in fair and unfair showups, because adding an extra parameter and 

allowing σguilty to vary across fair and unfair showups (i.e., using σguilty(fair) and σguilty(unfair)) did not significantly 

improve the fit. 
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and unfair showup conditions (full model)2. We used the best-fitting model parameters to 

draw the lines of best fit on Figure 2A in our main reply. It is clear from the correspondence 

between the empirical data points and the model-predicted lines of best fit, that the model 

was able to capture the trends in our data. This is corroborated by the non-significant chi-

square goodness-of-fit statistic in Table S1 (Yes response analysis, full model column). 

Looking at the best-fitting parameters in the full model columns in Table S1, it is clear that 

dInnocent-Guilty is higher in fair showups than unfair showups. Next, we fit the same model but 

we constrained dInnocent-Guilty to be equal across the fair and unfair showups, while allowing the 

confidence criteria to differ across conditions by an additive factor (constrained model; note 

that the additive factor was allowed to vary between the full and constrained models). The 

constrained model provided a significantly worse fit of the data than the full model, χ2 (1) = 

10.17, p = .001. This indicates that dInnocent-Guilty is significantly larger in the fair (block) 

showup condition than the unfair (do-nothing) showup condition. 

Taken together, the results of our model-fitting exercise are concordant with our partial 

ROC analyses: Both suggest that fair showups enhance people’s ability to discriminate 

between innocent and guilty suspects more than unfair showups. This pattern occurs, even 

though there is no opportunity for filler-siphoning. Thus, our experiment supports the 

prediction made by the diagnostic-feature-detection theory; an effect that cannot be attributed 

to filler-siphoning because there are no foils in showups. 

 

 

 

 

 

 

 

 

 

 

                                                 
2 d (the distance between the means of the innocent and guilty distributions in units of σinnocent) provides a useful 

discriminability measure when unequal variance is assumed and the magnitude of the unequal variance 

parameter does not vary across conditions (i.e., σguilty is the same across fair and unfair showups). Under such 

conditions, it is linearly related to the standard discriminability measure used in the unequal-variance case, 

namely, da. 
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Table S1 

Full and Constrained Model Fits for the Fair (Block) vs. Unfair (Do-nothing) Comparisons in the “Yes 

Response” Analysis and “Yes and No Response” Analysis 

 Yes Response Analysis Yes and No Response Analysis 

 Full Model Constrained Model Full Model Constrained Model 

Estimate Fair Unfair Fair Unfair Fair Unfair Fair Unfair 

dInnocent-Guilty 1.13 0.92 1.02 1.02 1.12 0.93 1.03 1.03 

σGuilty 0.65 0.65 0.67 0.67 0.88 0.73 0.82 0.82 

c1 0.75 0.14 0.66 0.19 0.50 0.75 0.49 0.77 

c2 0.78 0.17 0.69 0.22 0.00 0.26 0.00 0.27 

c3 0.88 0.27 0.80 0.33 0.66 0.09 0.63 0.09 

c4 1.12 0.51 1.03 0.57 1.11 0.48 1.05 0.51 

c5 1.58 0.97 1.51 1.04 1.70 0.98 1.60 1.06 

Overall χ2 19.25 29.42 46.26 56.78 

Overall df 11 12 6 8 

Overall p .057 .003 < .001 < .001 
Note. For the Yes response analysis, the full model allows d to differ between the fair vs. unfair showup comparison, while the 

constrained model holds d constant across the fair vs. unfair comparison. In the Yes and No response analysis, the full model 

allows d and σ (i.e., da) to differ between the fair vs. unfair showup comparison, while the constrained model holds d and σ (i.e., 
da) constant across the fair vs. unfair comparison. The overall χ2, df and p goodness-of-fit statistics show that in both analyses, 

the fit was worse in the constrained model compared to the full model. 

 

Yes and No Responses: Area Under the Curve (AUC) Analysis 

We next analyzed the full ROCs, which is how old/new ROCs are typically analyzed in 

list-memory studies. In brief, to construct the full ROC curves in Figure S1 we formed a 

single 21-point confidence scale, ranging from Yes 100 to Yes 0 then No 0 to No 100. We 

collapsed Yes 0 and No 0 into one category. In Figure S1, every hit rate includes in the 

denominator the total number of trials which presented the guilty suspect at test. Every false 

alarm rate includes in the denominator the total number of trials which presented the innocent 

suspect at test. All that changes across the ROC is the proportion of trials included in the 

numerator of each measure. The leftmost ROC point includes only those IDs made with the 

highest level of confidence (Yes 100). The next point includes only those IDs made with 

highest and the second-highest level of confidence (Yes 100 and Yes 90). This continues all 

the way down the scale, crashing right through the arbitrary Yes/No point on the confidence 

scale. As such, the bottom half of each curve in Figure S1 (i.e., on the left side of the graph) 

corresponds exactly to the curves displayed in Figure 1B in our main reply. In Figure S1, the 

curves have just been extended (i.e., on the right side of the graph) to also take into account 

gradations of confidence in No responses. 

Figure S1B shows that the ROC curve for fair (block) showups is higher than the ROC 

curve for unfair (do-nothing) showups at the left side of the graph (i.e., Yes responses), but 
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the curves begin to overlap around the mid-point of the curves where No responses are 

included. AUC analysis showed that people were better at discriminating between innocent 

and guilty suspects in fair showups, AUC = 0.800, 95% CI = [0.781, 0.819], than in unfair 

showups, AUC = 0.775, 95% CI = [0.755, 0.795]), D = 1.80, but the effect was not 

statistically significant, p = .07. Note this experiment was conducted with an a priori 

directional prediction that was specified in the pre-registration (i.e., in our pre-registration we 

hypothesized: “unfair (do-nothing) showups will impair people’s ability to discriminate 

between innocent and guilty suspects more than fair (block) showups.”). Thus, it would not 

be unreasonable to apply a one-tailed test, in which case the result would be statistically 

significant at p = .035. Whether a one-tailed or a two-tailed test is used, the results suggest 

that the fair showup advantage that was clearly evident in subjects who said “Yes, that is the 

culprit” is reduced when subjects who said “No, that is not the culprit” are included. We next 

fit a signal-detection model to the full ROC data. As noted earlier, a fit of a theoretical signal-

detection model provides the most direct test of the prediction made by the diagnostic-

feature-detection account. 

 

 

 
Figure S1. Receiver Operating Characteristic (ROC) curves for the fair (block) and 

unfair (do-nothing) showup conditions. The lines of best fit are drawn using the best-

fitting parameters from the corresponding signal-detection model analysis. 
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Signal-detection Model: Yes & No Responses 

For this test, we created a single 5-point confidence scale by combining confidence 

ratings of No 80-70 (c1), No 60-0 (c2), Yes 0-60 (c3), Yes 70-80 (c4), and Yes 90-100 (c5). 

Note that the final confidence category—No 100-90—is fixed once the other categories are 

specified. The model assumes that a positive identification is made when the suspect’s face is 

familiar enough to exceed c3, and the confidence in the identification is determined by the 

highest criterion that is exceeded. As before, we fixed µinnocent and σinnocent to 0 and 1, 

respectively, and fit the model to the data by minimizing the chi-square goodness-of-fit 

statistic. The model had 14 parameters (µguilty(fair), µguilty(unfair), σguilty(fair), σguilty(unfair), and c1, c2, 

c3, c4, c5 for fair and unfair showups) and both fair and unfair showups had 10 degrees of 

freedom in the data (5 levels of confidence for guilty suspect identifications and 5 levels of 

confidence for innocent suspect identifications). Thus, the fit of the model to the data 

involved 20 – 14 = 6 degrees of freedom. 

We first fit the unequal-variance model allowing dInnocent-Guilty and σguilty to differ across 

the fair and unfair showup conditions (full model). As with the fit to the Yes response data, 

an unequal-variance model fit significantly better than an equal-variance model. Unlike the 

fit to the Yes response data, σguilty(fair) differed significantly from σguilty(unfair), so these 

parameters were not constrained to be equal to each other. Note that it is sensible that 

σguilty(unfair) was estimated to be smaller than σguilty(fair). The innocent suspects in the unfair 

showups have more variability than in the fair showups (i.e., σinnocent(unfair) > σinnocent(fair)), 

because each innocent suspect in the pool for the unfair showups also had a somewhat 

different distinctive feature (whereas the feature was fixed for the guilty suspect). This 

variability shows up in the σguilty parameters (i.e., σguilty(unfair) < σguilty(fair)) because the σinnocent 

parameter was always fixed to 1 (thus, a change in σinnocent will show up as a change in σguilty). 

Also, unlike the fit to the Yes response data, the confidence criteria across the two conditions 

were not shifted in lockstep (i.e., constraining them to differ by a constant additive factor 

across conditions significantly worsened the fit), so c1, c2, c3, c4, c5 were also free to vary 

across the fair and unfair showups. 

Because an unequal-variance model fit the data best, the relevant discriminability 

parameter was not d'. Moreover, because σguilty(fair) ≠ σguilty(unfair), we also could not use the d 

parameter as a proxy for discriminability, as we did in the analysis of yes responses. We 

therefore measured discriminability using the standard da formula: (µguilty - µinnocent) / 

√[.5(σ2
guilty + σ2

innocent)]. Setting µinnocent = 0 and σinnocent = 1 by convention, the equation 
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reduces to da = µguilty / √[.5(σ2
guilty + 1)]. For the unconstrained fit, da Innocent-Guilty was higher in 

fair showups (da Innocent-Guilty = 1.18) than unfair showups (da Innocent-Guilty = 1.05). Next, to 

determine if the difference was significant, we fit the same model but we constrained dInnocent-

Guilty and σguilty (i.e., da Innocent-Guilty) to be equal across the fair and unfair showups while still 

allowing the confidence criteria to differ across conditions. The constrained model provided a 

significantly worse fit of the data than the full model, χ2 (2) = 10.52, p = .005. Again, this 

indicates that da Innocent-Guilty is significantly better in the fair (block) showup condition than 

the unfair (do-nothing) showup condition. Thus, whether a signal-detection model is fit to the 

partial ROC data or to the full ROC data, the prediction made by the diagnostic-feature-

detection account was confirmed—people’s ability to discriminate between innocent and 

guilty suspects was better in the fair (block) showup than the unfair (do-nothing) showup. 

The next logical step would be to develop alternative theoretical interpretations of this 

interesting finding and empirically pit those theoretical accounts against each other and 

against the diagnostic-feature-detection account. But, critically, because showups do not 

contain foils, this finding cannot be attributed to differential filler-siphoning. 

Finally, we should note that we also fit more complex versions of the “Yes and No 

Responses” (full ROC) signal-detection model. These analyses are available at 

https://osf.io/nr24b/. In short, the fit of the “Yes and No Responses” model was significantly 

improved when Yes responses and No responses were allowed to differ from each other, 

suggesting that Yes responses and No responses differed significantly in terms of 

discriminability (i.e., dInnocent-Guilty and σguilty). This finding corresponds with the pattern of 

results observed in the ROC analyses (Figure S1). For Yes responses, the data for fair (block) 

showups fall higher on the ROC plot than the data for unfair (do-nothing) showups. But when 

No responses are included and full ROC curves are constructed, the data for the fair and 

unfair showups converge and lie on top of each other. Although we had not anticipated this 

difference, it is perhaps unsurprising: People who respond Yes and select a person from a 

lineup (called choosers in previous research) and people who respond No and state that the 

culprit is “not present” (called non-choosers in previous research) are often analyzed 

separately and found to differ from each other in important ways in eyewitness ID research 

(e.g., Sporer, Penrod, Read, & Cutler, 1995). Future research should continue to examine 

how and why Yes responses and No responses differ on eyewitness identification tasks.  

 

 

https://osf.io/nr24b/
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An Empirical Comparison of the Models:  

Fitting the BEST Model vs. the INTEGRATION Model to the Colloff et al. (2016) Data 

 

We used the BEST model to analyze our lineup data (Colloff et al., 2016), but Smith et 

al. (2017) endorsed the INTEGRATION model instead. These two models differ only in the 

assumed decision rule. The BEST model assumes that after the most familiar face is detected, 

the identification decision is based on the familiarity of that face alone (e.g., Clark, Erickson, & 

Breneman, 2011; Macmillan & Creelman, 2005). The INTEGRATION model assumes that 

after the most familiar face in the lineup is detected, the identification decision is based on the 

sum of the familiarity values of all of the faces in the lineup. If the summed familiarity variable is 

high enough, the most familiar face is identified (e.g., Duncan, 2006; Palmer, Brewer, & Weber, 

2010). The only way to test which model is more appropriate for the analyses is to 

empirically compare them. Here, we fit the INTEGRATION model to our (Colloff et al., 

2016) fair (replication) and unfair (do-nothing) lineup data to determine: (a) which model—

the INTEGRATION model or the BEST model—provided a better fit to the data; and (b) 

whether the INTEGRATION model led to the same or different conclusions about d'Innocent-

Guilty as the BEST model. 

We used the same model-fitting procedure that we used when we fit the BEST model in 

our original paper (see Colloff et al., 2016, Supplemental Materials, p.3). In brief, the model 

for the fair lineup had 6 parameters (μguilty, c1, c2, c3, c4, c5) and there were 15 degrees of 

freedom in the data (5 levels of confidence for: guilty suspect identifications, foil 

identifications in target-present lineups, and foil/innocent suspect identifications in target-

absent lineups). Thus, the fit of the model to the fair lineup data involved 15 – 6 = 9 degrees 

of freedom. The model for the unfair lineup had 7 parameters (μguilty, μfoil, c1, c2, c3, c4, c5) and 

there were 20 degrees of freedom in the data (5 levels of confidence for: guilty suspect 

identifications, foil identifications in target-present lineups, innocent suspect identifications, 

and foil identifications in target-absent lineups). Thus, the fit of the model to the unfair data 

involved 20 – 7 = 13 degrees of freedom. For both the fair and unfair models, we fixed 

μinnocent to 0 and set the standard deviations for each distribution to 1, for simplicity. Once the 

frequencies of positive identifications were entered into the model, the frequencies of reject 

identifications were fixed. We fit the model by minimizing the chi-square goodness-of-fit 

statistic. 

Table S2 shows the observed identification responses and the identification responses 
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predicted by the BEST model from Colloff et al. (2016), along with the identification 

responses predicted by the INTEGRATION model. It is clear that both models are able to 

capture the basic trends in the Colloff et al. data, but which model provides the best fit? To 

answer that question, we examine the χ2, df and p goodness-of-fit statistics in Figure 2B in 

our main reply. They show that, for both fair (replication) and unfair (do-nothing) lineups, the 

INTEGRATION model offers a worse fit than the BEST model. Although all useful models 

are simplified approximations to the truth, the basic idea of model comparison is that, all else 

being equal, the better fitting model is the one that should be used to interpret the data, at 

least until an even better-fitting model is developed. It is therefore incorrect to assert that the 

INTEGRATION model is the proper model to use to interpret these data. 

 

 

Table S2 

Observed Identification Responses and Identification Responses Predicted by the BEST and the 

INTEGRATION Models in Each Confidence bin in the Fair (Replication) and Unfair (Do-nothing) 

Conditions of Colloff et al. (2016) 
 Fair Unfair 

 Target present Target absent Target present Target absent 

Confidence 

Guilty 

Suspect 

Foil Incorrect 

Rejection 

Foil Correct 

Rejection 

Guilty 

Suspect 

Foil Incorrect 

Rejection 

Innocent 

Suspect 

Foil Correct 

Rejection 

0-20            

Observed 21.00 45.00 - 57.00 - 17.00 32.00 - 18.00 29.00 - 

Best Predicted 20.99 38.17 - 64.20 - 28.65 19.74 - 26.35 28.04 - 

Integration Predicted 26.46 33.21 - 64.43 - 43.14 13.88 - 32.43 25.46 - 

30-40            

Observed 36.00 52.00 - 99.00 - 35.00 36.00 - 37.00 50.00 - 

Best Predicted 33.96 58.33 - 94.28 - 49.22 30.15 - 42.38 41.12 - 

Integration Predicted 40.76 51.12 - 92.43 - 64.48 20.71 - 46.17 36.20 - 

50-60            

Observed 96.00 127.00 - 207.00 - 156.00 70.00 - 113.00 69.00 - 

Best Predicted 89.77 135.01 - 203.00 - 148.19 68.25 - 110.26 85.91 - 

Integration Predicted 100.57 125.78 - 197.99 - 160.18 51.19 - 104.52 81.62 - 

70-80            

Observed 106.00 93.00 - 168.00 - 155.00 44.00 - 74.00 49.00 - 

Best Predicted 96.58 113.68 - 156.10 - 145.58 41.84 - 87.71 47.48 - 

Integration Predicted 96.08 119.52 - 152.55 - 132.87 42.14 - 76.74 59.59 - 

90-100            

Observed 88.00 65.00 - 96.00 - 266.00 24.00 - 122.00 22.00 - 

Best Predicted 94.42 68.03 - 86.49 - 264.29 28.69 - 106.32 29.32 - 

Integration Predicted 74.93 93.40 - 87.49 - 210.48 66.83 - 99.13 77.21 - 

Total            

Observed - - 396.00 - 513.00 - - 275.00 - - 434.00 

Best Predicted - - 376.05 - 535.93 - - 285.40 - - 412.11 

Integration Predicted - - 363.18 - 545.11 - - 304.10 - - 377.94 

Note. The total row displays all reject identification decisions because the models do not account for the confidence level 

with which lineup rejections are made. 
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Despite the comparatively poor performance of the INTEGRATION model, we 

nevertheless considered Smith et al.'s (2017) use of it to interpret the data. We do so to 

highlight that Smith et al. mistakenly fit a fair lineup model with two-distributions to the 

unfair do-nothing lineup data which has three-distributions (see section two ‘An empirical 

comparison of Smith et al.’s model versus our model’ in our reply), and to show that, when fit 

correctly, the INTEGRATION model finds the same result as the BEST model. Again, we fit 

the INTEGRATION model using the same model-fitting procedure that we used in our 

original paper when we fit the BEST model (Colloff et al., 2016, Supplemental Materials, 

p.3). We first fit the model allowing d'Innocent-Guilty to differ across the fair and unfair lineup 

conditions (full model), then we fit the same model but we constrained d'Innocent-Guilty to be 

equal across the fair and unfair lineups, while allowing the confidence criteria (c1, c2, c3, c4, 

c5) to differ across conditions (constrained model). We would conclude that the difference in 

d'Innocent-Guilty between the fair and unfair lineups is statistically significant, if the constrained 

model provides a significantly worse fit to the data than the full model. 

Table S3 shows the full and constrained model fits for the BEST model from Colloff et 

al. (2016) and for the INTEGRATION model. First, looking at the best-fitting parameters in 

the full model columns, it is clear that both models estimate that d'Innocent-Guilty is higher in fair 

lineups than in unfair lineups. Fitting the BEST model in Colloff et al. showed that the 

constrained model provided a significantly worse fit of the fair (replication) and unfair (do-

nothing) data than the full model, χ2 (1) = 24.32, p < .001. We found the exact same pattern 

of results using the INTEGRATION model: The constrained model provided a significantly 

worse fit of the data than the full model, χ2 (1) = 17.41, p < .001. In short, both the BEST 

model and the INTEGRATION model tell the same story: fair lineups make it significantly 

easier for people to discriminate between innocent and guilty suspects than unfair lineups. 

These results are consistent with the diagnostic-feature-detection interpretation (Wixted & 

Mickes, 2014), and, notably, the findings from our new showup experiment. 

Finally, note that, in one sense, memory performance in unfair lineups is better in that, 

by design, it is easier to tell the difference between the foils (with no distinctive feature) and 

the guilty suspect (who has the distinctive feature) compared to the fair lineup condition. In 

other words, d'Foil-Guilty, should be larger in unfair lineups compared to fair lineups. Indeed, 

Figure 2B in our reply shows that, according to both the BEST model and the 

INTEGRATION model, d'Foil-Guilty in the unfair lineups is much larger than it is in the fair 

lineups. This is logical. Making the foils less similar to the suspect as we move from fair to 
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unfair lineups—that is, the experimental manipulation itself—increases discriminability 

between foils and suspects. But measuring how the foils differ from the suspects only serves 

as a manipulation check; it does not tell us anything about the theoretically interesting 

measure (i.e., d'Innocent-Guilty) which we tested in our original paper. This is because, in unfair 

lineups, it is also easier to tell the difference between the foils (with no distinctive feature) 

and the innocent suspect (who has the distinctive feature) compared to the fair lineup 

condition. Therefore, as shown in Figure 2D of our reply, but contrary to how Smith et al. 

(2017) modeled the data, when the lineup is unfair, the innocent suspect distribution (which 

is needed to measure d'Innocent-Guilty) should be estimated separately from the foil distribution 

(which has moved further away as it is the experimental manipulation). Smith et al. modelled 

the data by combining innocent suspect and foil IDs into one distribution to calculate an 

“omnibus” measure of memory performance in unfair lineups. This confounds the measure 

required for testing the diagnostic-feature-detection theory (d'Innocent-Guilty), with the 

experimental manipulation (d'Foil-Guilty). 

 

 

Table S3 

Full and Constrained (d'Innocent-Guilty) Model Fits Using the BEST Model and the INTEGRATION 

Model for the Fair (Replication) vs. Unfair (Do-nothing) Comparison from Colloff et al. (2016) 

 BEST INTEGRATION 

 Full model Constrained model Full model Constrained model 

Estimate Fair Unfair Fair Unfair Fair Unfair Fair Unfair 

d'Innocent-Guilty 0.86 0.54 0.73 0.73 0.99 0.66 0.86 0.86 

d'Foil-Guilty 0.86 1.79 0.73 1.88 0.99 2.00 0.86 2.08 

c1 1.18 0.22 1.16 0.32 –0.17 –0.83 –0.24 –0.74 

c2 1.27 0.31 1.25 0.41 0.18 –0.47 0.10 –0.37 

c3 1.41 0.46 1.39 0.56 0.69 0.03 0.62 0.13 

c4 1.76 0.85 1.74 0.95 1.97 1.22 1.88 1.33 

c5 2.22 1.25 2.20 1.35 3.54 2.31 3.46 2.43 

Overall χ2 49.41 73.73 224.52 241.93 

Overall df 22 23 22 23 

Overall p <.001 <.001 <.001 <.001 
Note. The full model allows d'Innocent-Guilty to differ between the fair vs. unfair lineup comparison. The constrained 

model holds d'Innocent-Guilty constant across the fair vs. unfair comparison. A lower chi-square indicates a better fit. For 

both the BEST model and the INTEGRATION model, the overall χ2, df and p goodness-of-fit statistics show that 

the fit was worse in the constrained model compared to the full model. 
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